

Praise for Team Geek

“This delicious book speaks to your inner geek!
Even if you do not consider yourself a geek,

the advice is worth the time to read anyway.”

 Vint Cerf, Chief Internet Evangelist at Google

“I’ve been working with engineers for over 30 years, and in that
time I’ve learned that engineering is as much about people as it is
science and technology, but most engineers put little or no effort
into understanding how to work with others. If you want to be
more effective and efficient at creating and innovating, then this

book is for you.”

Dean Kamen, Founder of DEKA Research

“Ben and Fitz have assembled an amazing collection of patterns
and anti-patterns for software development teams to consider.
This book is for anyone struggling with understanding how to

make such a team more productive—for the code wranglers
themselves, for their managers, and for everyone in orbit around
them. It puts down on paper many of the things innate to great

open source developers. I wish I’d had this book years ago.”

 Brian Behlendorf, Chief Technology Officer
at World Economic Forum

“Software Development is a team sport. If you want to become
a top performer in the sport, there are hundreds of good books

that tell you how to work on your individual skills as a software
developer, and a few on how to be a good manager. This book

breaks new ground by setting out all the key lessons for you as a
software developer to learn how to work with your teammates,

and how to be a good teammate. The field has needed a book like
this for a long time, and finally it has arrived.”

 Peter Norvig, Director of Research at Google

“If you’re trying to build a team that is focused on shipping
great software, then you need to read this book. Ben and Fitz

do a great job of translating touchy-feely subjects like humility,
respect, and trust into tactical suggestions that even the most

skeptical developer can appreciate.”

Eric Lunt, Chief Technology Officer & Co-founder of BrightTag

“This is a wonderful book. It deals with the hardest problem in
computer programming, which is dealing with other computer

programmers :-). I’ll be buying copies for
all Samba Team members.”

Jeremy Allison, Co-creator of Samba

“You might have heard the aphorism ‘10X programmer,’
describing the fact that top programmers are an order of

magnitude more productive than average programmers. Making
a big impact requires experience and powerful technical chops,

but also empathy for your co-workers and users. No amount of
smarts or knowledge can make up for a lack of the latter, but this

book will help you hone your soft skills and leave
an even bigger dent in the world.”

Bob Lee, Chief Technology Officer at Square

Fitz and Ben take a simple creed—Humility Respect and
Trust—and cultivate that foundation with copious examples and
stories. The experience and wisdom they share will help software

engineers who work in teams—most of us—
be more effective and productive.”

Greg J. Badros, VP Products & Engineering at Facebook

“Software is made of people. A well run team, using the
principles outlined in Team Geek, can out-think, out-code, and

out-ship any individual hacker. Coder, educate thyself!

Johnathan Nightingale, Senior Director of Firefox Engineering at
Mozilla

“Team Geek is How to Win Friends and Influence People for
programmers. It’s full of clear and actionable advice on how to

be more happy, productive and effective on your technical team.
Excellent and needed.”

Adrian Holovaty, Co-creator of Django

“Ben and Fitz say what I’ve been practicing
but could never quite put in words.”

Guido van Rossum, Benevolent Dictator for Life at Python

“Please send one copy to:
 Poul-Henning Kamp

 c/o FreeBSD core team
 Delivery no later than March 1994.”

Poul-Henning Kamp, Committer at The FreeBSD Project

“Ben and Fitz come not to praise the myth of the lone
programmer, but to bury it. They preside over its wake in a series

of essays designed to teach right-brained engineers how to hack
the most complex system they’ll ever encounter: people in a group.

Team Geek shows that the most humane software is made by the
best-functioning human teams—and how to achieve both.”

John Tolva, Chief Technology Officer for the City of Chicago

“This is a great book about the sociology of software development,
with an emphasis on open source software and large corporations.

the section on managing up and dealing with politics is essential
reading for any new engineer in a corporate environment. I would
recommend it to any engineer regardless of where he worked! This

is the first book I’ve seen that covers office politics in an easily
accessible fashion for engineers. The stories and anecdotes and

practical tips on ‘How do you work with this difficult person?’ are
gold! You literally cannot buy this anywhere.”

Piaw Na, Author of An Engineer’s Guide to SIlicon Valley Startups
and Startup Engineering Management

“Team Geek is a gem of a book, in which Ben and Fitz share
their very sensible philosophy of how programmers can best

contribute to a good team. We are lucky that this important field
is finally opened up for discussion with such warmth and humor.
I wish that 21-year-old me had both a copy of the book and the

good sense to take it to heart.”

Bryan O’Sullivan, Facebook

“This book is a blueprint for building a healthy software
development culture. It should be required reading for

engineering managers, technical leaders, and even non-technical
executives who need to understand how team dynamics affect
retention of top engineering talent and the quality of software

they produce.”

Bruce Johnson, Engineering Director at Google

“The skill of writing software will help you stay employed but if
you combine that with the ability to work well with others, and

you can change the world. This book isn’t just about how you
can be a better programmer. It’s about how to be awesome.”

Clay Johnson, Author of The Information Diet

“Team Geek is an insightful exploration of building successful
teams and products, taken from years of tackling difficult

developer pains and issues that we all experience in our careers.
The jovial approach to overcoming both engineering and human

issues on a technical team delivers an engaging foundation text
that should be a staple of every engineer’s library.”

Jonathan Leblanc, Principal Developer Evangelist at X.Commerce

“Programming is no longer about code and machines, if it ever
was. Increasingly, it’s about fitting together existing pieces in new
ways—and each piece comes with people attached. The authors
have understood this for years, and their message is as simple as
their advice is varied: focus on the people as much as you focus

on the code, and you will not only be a happier programmer, you
will be the cause of happier programmers. It couldn’t come at a

better time!”

Karl Fogel, Co-founder of Open Tech Strategies LLC

“I’ve been blogging Ben & Fitz’s talks at conferences for years,
because so few people address the social side of working with
geeks. I’m excited to read the collective wisdom of their talks

in one convenient book and not have to chase them around the
country anymore.”

Robert Kaye, Lead Geek at Musicbrainz

Team Geek
A Software Developer’s
Guide to Working Well

with Others

Brian W. Fitzpatrick
and Ben Collins-Sussman

Beijing · Cambridge · Farnham · Köln · Sebastopol · Tokyo

Team Geek
by Brian Fitzpatrick and Ben Collins-Sussman

Copyright © 2012 Brian Fitzpatrick and Ben Collins-Sussman. All rights
reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebas-
topol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (safari.oreilly.
com). For more information, contact our corporate/institutional sales depart-
ment: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Melanie Yarbrough
Copyeditor: Audrey Doyle
Proofreader: Kevin Broccoli
Indexer: Lucie Haskins

Production Services: Nancy Kotary
Cover Designer: Edie Freedman
Interior Designer: Ron Bilodeau
Cover Photo: Vintage Images
Illustrators: Amber Lewis of
sunnibrown.com

Printing History:

June 2012: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. Team Geek and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author(s) assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN 10: 1449302440
ISBN 13: 9781449302443
[LSI]

 ix

Dedication . xi
Mission Statement . xiii
Acknowledgments . xv
Introduction . xix

Chapter 1
The Myth of the Genius Programmer 1

Chapter 2
Building an Awesome Team Culture 25

Chapter 3
Every Boat Needs a Captain . 53

Chapter 4
Dealing with Poisonous People 85

Chapter 5
The Art of Organizational Manipulation 103

Chapter 6
Users Are People, Too . 129

Epilogue
Epilogue . 157

Appendix A
Further Reading . 159

Index . 161

Contents

Dedication

From Ben

For my parents, bringers of hope and joy, who taught me how
to read both words and people.

From Fitz

For my grandfather, Alvin “Nick” Fitzpatrick, who taught me
how to tell stories, and how to listen.

 xiii

Mission Statement

The goal of this book is to help programmers become more effective
and efficient at creating software by improving their ability to
understand, communicate with, and collaborate with other people.

 xv

Acknowledgments

While there are two names on the cover, this book is the result of
conversations we’ve had with hundreds if not thousands of people
over the course of our lives and careers. We’d like to take a few
moments to thank just a few of the people who are responsible for
many of the useful parts of this book (mistakes, as usual, are all
ours).

Thanks to the folks at O’Reilly Media: Edie Freedman for the cover
concept, and our fearless editor Mary Treseler—this book wouldn’t
exist without Mary’s encouragement, patience, and occasional
prodding.

Thanks to Sunni Brown and Amber Lewis at sunnibrown.com
for bringing our book to life with such delightful illustrations—
working with you guys was a true joy.

Thanks to our technical reviewers who contributed numerous
suggestions, ideas, and fixes that really brought the book together:
Dustin Boswell, Trevor Foucher, Michael Hunger, Jonathan LeBlanc,
Piaw Na, and Jack Welch. Thanks to our friends and colleagues
who reviewed the book in progress and caught some of our more
egregious mistakes: Dave Baum, Matt Cutts, Will Robinson, and
Bill Duane. Thanks to our friends who listened, offered advice, and
are just plain awesome: Karl Fogel, Jim Blandy, Matt Braithwaite,
Danny Berlin, and Chris DiBona. Thanks also to Linda Stone,
DeWitt Clinton, Bruce Johnson, Roland McGrath, and Amit Patel
for ideas and suggestions.

Thanks to Google, and especially the Google Chicago engineering
team, for their support, ideas, and suggestions, and for just plain
being a fantastic group of people to work with every day.

http://sunnibrown.com

xvi ACknOWleDGmentS

Thanks especially to some of our senior mentors and teachers, a
tiny bit of whose collective wisdom we’ve attempted to squeeze
onto these pages: Bill Coughran, Steve Vinter, Alan Eustace, Stu
Feldman, and Eric Schmidt.

Special thanks to Brian Robinson and Yvonne Ellison-Sandler for
their mentoring, guidance, and tutelage.

Thanks to the Apache Software Foundation, not only for having us,
but also for your focus on community and collaboration.

Thanks to all our close friends, who make us rich, rich men. Don’t
look at us that way—you know who you are.

Huge swaths of this book were conceived, outlined, and written
at the fabulous, friendly, and cozy Filter Cafe in our fair city of
Chicago.

From Fitz
Huge thanks to my wife Marie for her herculean patience,
understanding, and encouragement—your human insight and
compassion are always an inspiration to me. Thanks to my mom
for her constant support and enthusiasm. Thanks especially to my
mother-in-law, Rita Gumler, for her “people are plants” analogy.

To Ben: after knowing each other for 14 years, working together at
three jobs, and writing three books together, aren’t you sick of me
yet? Thanks for taking this wild, weird, and wonderful ride with
me—you’ve been a great friend and teacher. I can’t wait to see what
we come up with next (after a few months of sleep, of course).

Lastly, thanks to Mr. Charlie McGannon for working so hard to
teach me how to write in 11th grade English class. At the time, I
thought four rough copies for an essay was preposterous, but now
I know it’s preposterous—real writing takes many, many more
revisions than that. Here’s to “four corners and the middle” and
the OED, Mr. McGannon!

ACknOWleDGmentS xvii

From Ben
There aren’t proper words to express my gratitude for the amount
of space my wife Frances has given me—not just in writing this
book, but in a dozen other creative projects I’ve taken on over the
past few years. Without her quiet and rocklike support, none of
them could possibly have happened.

To Fitz: now that we finish each other’s sentences I think it’s fair to
say we’re like a very old married couple. I never knew it could be so
much fun to give talks with somebody, let alone write software and
books together. What an amazing set of opportunities we’ve been
given! Thanks for teaching me so much.

Finally, thanks to all the crazy people and corporations of Silicon
Valley: none of these crazy experiences could have happened if you
hadn’t inducted me into your bizarro-world.

About the Authors
Brian Fitzpatrick leads Google's Data Liberation Front and
Transparency Engineering teams and has previously led Google's
Project Hosting and Google Affiliate Network teams. He cofounded
Google's Chicago engineering office and serves as both thought
leader and internal advisor for Google's open data efforts.

Ben Collins-Sussman, one of the founding developers of the
Subversion version control system, led Google's Project Hosting
team, and now manages the engineering team for the Google
Affiliate Network. He cofounded Google's engineering office in
Chicago and ported Subversion to Google's Bigtable platform.

Introduction

“Engineering is easy. People are hard.”

 — Bill Coughran, former senior vice
president of engineering at Google

Life is full of unexpected twists, and the two of us never imagined
we’d someday write a book about software engineering.

Like most computer geeks, we discovered that our hobby and
passion—playing with computers—was a great way to make a living
after graduating college. And like most hackers of our generation,
we spent the mid-1990s building PCs out of spare parts, installing
prerelease versions of Linux from piles of diskettes, and learning to
administer Unix machines. We worked as sysadmins, and then at
the dawn of the dot-com bubble, became programmers in smaller
companies. After the bubble burst, we started working for surviving
Silicon Valley companies (such as Apple) and later were hired by a
startup (CollabNet) to work full time on designing and writing an
open source version control application called Subversion.

But something unexpected happened between 2000 and 2005.
While we were creating Subversion, our job responsibilities slowly
changed. We weren’t just writing code all day in a vacuum; we
were leading an open source project. This meant hanging in a
chat room all day with a dozen other volunteer programmers and
paying attention to what they were doing. It meant coordinating
new features almost entirely through an email list. Along the way,
we discovered that the key to a project’s success wasn’t just writing
great code: the way in which people collaborated toward the end
goal mattered just as much.

In 2005 we started Google’s Chicago engineering office and
continued our careers as programmers. At this point we were already
deeply involved with the open source world—not just Subversion,

xx IntrODuCtIOn

but the Apache Software Foundation (ASF) too. We ported
Subversion to Google’s BigTable infrastructure and launched an
open source project hosting service (similar to SourceForge) under
the banner of Google Code. We began attending—then speaking
at—developer-centric conferences such as OSCON, ApacheCon,
PyCon, and eventually Google I/O. We discovered that by working
in both corporations and open source projects we had accidentally
picked up a trove of wisdom and anecdotes about how real software
engineering teams work. What began as a series of humorous talks
about dysfunctional development processes (“Subversion Worst
Practices”) eventually turned into talks about protecting teams from
jerks (“How Open Source Projects Survive Poisonous People”).
Larger and larger crowds gathered at our presentations in what
can only be described as “group therapy” for software developers.
Everyone could relate to the sorts of problems we talked about and
wanted to gripe about these problems as a group.

And so here we are, six years later, with a pile of standing-room-
only talks about the social challenges of software development. Our
editor at O’Reilly Media, Mary Treseler, pointed out that we should
convert these talks into a new book. The rest is history.

Trying to write great software? This book is for you.

IntrODuCtIOn xxi

Who Is This Book For?
This book is squarely written for software developers—for those
who are trying to advance their careers and ship great software.
It’s not particularly aimed at CEOs, psychologists, “management,”
computer science theoreticians, or people soldering breadboards
(though those folks may enjoy it too). As our reader, we’re assuming
two important things about you:

•	 You work on a team with other programmers. Either you work
in a corporate environment, or perhaps you’re part of an open
source or school project.

•	 You enjoy software engineering and believe it should be a
rewarding and fun activity. If you’re only turning 1s into 0s and
0s into 1s in order to pay off the debt collector, you probably
aren’t interested in self-actualization or career fulfillment.

In the process of discussing how engineers best “play well
with others,” we end up touching on a number of subjects that
(superficially) may seem to be out of a programmer’s job description.
At different points we discuss how to lead a team effectively,
navigate an organization, and build a healthy relationship with
the users of your software. On the surface these chapters may
seem specifically directed toward “people managers” or “product
managers”—but we assure you that at some point in your software
engineering career you’ll find yourself accidentally wearing those
hats. Suspend your disbelief and keep reading! Everything in this
book is ultimately relevant to software engineers.

Warning: This Is Not a Technical Manual

Before we start, we need to set your expectations. Motivated
programmers love to read books that lay out domain-specific
problems in a perfect mathematical presentation; each problem is
typically paired with a prescribed procedural solution.

This is not such a book.

Our book specifically investigates the human side of software
development, and humans are complex things. As we like to say in
our talks, “People are basically a giant pile of intermittent bugs.”
Both the problems and solutions we discuss are messy and difficult
to place into perfect logical boxes. This book reads as a series of

xxii IntrODuCtIOn

essays, because that’s what it essentially is. In each chapter we’ll
discuss a slew of related problems (often as anecdotes), then move
on to discuss a group of solutions relevant to the overall topic. To
fully absorb everything you may need to lengthen your attention
span to cover multiple pages, engage your right brain to make
connections, or just plain sleep on it!

We should also make a couple more disclaimers. As we like to joke
in our talks, “These opinions are purely our own and are based on
our experiences. If you disagree, you’re welcome to get your own
talk.” Just as with our oral presentations, we encourage any and all
discussion that arises from the topics in this book. We’re happy to
chat about feedback, corrections, new opinions, and disagreements:
you can find us at http://www.benandfitz.com/. Everything in this
book comes from our own trials by fire and the lessons that came
out of our numerous mistakes.

You should also know that every name used in our examples has
been changed to protect the innocent (or guilty).

The Contents of This Book Are Not Taught in School

Most of the software engineers we know have spent anywhere
from four to 10 years in school learning about computer science
and software engineering. At press time, we’re not aware of any
curriculum1 that actually teaches you how to communicate and
collaborate in a team or a company. Sure, most students are required
to participate in a group project at some point in their academic
career, but there’s a big difference between teaching someone how
to successfully work with another person and throwing him into a
situation of forced collaboration. Most students end up jaded by
the experience.

1 We’ve read PeopleWare by Tom DeMarco, and it’s a great book, but it’s
not so much a book for engineers to learn how to work more efficiently
with humans, as it is a book for managers to learn how to make teams
more successful.

IntrODuCtIOn xxiii

The Pitch
Being a successful programmer isn’t just about learning the latest
languages or writing the fastest code. Professional coders almost
always work in teams, and it turns out that one’s team directly
affects that individual’s productivity and happiness more than
many people would like to admit.

The basic idea of this book is simple: writing software is a team
sport, and we posit that the human factors involved have as much
influence on the outcome as the technical factors. Even if they’ve
spent decades learning the technical side of programming, most
people haven’t really focused on the human component. Learning
to collaborate is just as important to success. If you invest in the
“soft skills” of software engineering, you can have a much greater
impact for the same amount of effort.

 1

C H A P T E R 1

The Myth of the Genius
Programmer

Since this is a book about the social perils of software development,
it makes sense to focus on the one variable you definitely have
control of: you.

People are inherently imperfect. But before you can understand
the bugs in your coworkers, you need to understand the bugs in
yourself. We’re going to ask you to think about your own reactions,
behaviors, and attitudes—and in return, we hope you gain some
real insight into how to become a more efficient and successful
software engineer. You’ll end up spending less energy dealing with
people-related problems and more time writing great code.

The critical idea in this chapter is to understand that software
development is a team sport. And in order to succeed on an
engineering team, you need to reorganize your behaviors around
the core principles of humility, respect, and trust.

Before we get ahead of ourselves, let’s start by observing how
programmers behave in general.

Help Me Hide My Code
The two of us have been speaking at programming conferences
quite a bit for the past six years. Since we’re part of the original
team that launched Google’s open source Project Hosting service
back in 2006, we used to get lots of questions and requests about

2 ChApter 1

the product. Back in mid-2008, we noticed a distinctive trend in the
sort of requests we were getting:

Can you guys please give Subversion on Google Code the
ability to hide specific branches?

Can you guys make it possible to create open source projects
that start out hidden to the world, then get revealed when
they’re ready?

Hi, I want to rewrite all my code from scratch, can you
please wipe all the history?

Can you spot a common theme to these requests?

The key motif here is insecurity. People are afraid of others seeing
and judging their work in progress. In one sense, it’s just a part of
human nature—nobody likes to be criticized, especially for things
that aren’t finished. This attitude tipped us off to a trend within
software development. Insecurity is actually the symptom of a
larger problem.

The Genius Myth
First, let’s be clear: we’re not actually sports fans. When our wives
cheer for baseball or football on TV, we scratch our heads and
wonder what’s so exciting. Nevertheless, we did live through the
early 1990s and witnessed the amazing run of championships by
the Chicago Bulls. (That’s a basketball team, by the way.) We were
both in Chicago during this period, and the national media was
saturated for years with stories about this amazing team.

What did we mostly hear about on TV and in newspapers? Not the
team, but Michael Jordan, the superstar. Every player around the
world wanted to be MJ. We watched him dance circles around other
players. We watched him in television commercials. We went to see
silly movies where he played basketball with cartoon characters. He
was a star, and every kid on every court practicing hoops secretly
wished to grow up and follow his path.

Programmers have that same instinct—to find idols and worship
them. Linus Torvalds, Richard Stallman, Bill Gates—all heroes who
changed the world with heroic feats. Linus wrote Linux by himself,
right?

the myth OF the GenIuS prOGrAmmer 3

Beware of the natural instinct to idolize things.

Actually, Linus just wrote the beginnings of a proof-of-concept
Unix-like kernel, and showed it to an email list. That was no small
task, and it was definitely an impressive achievement, but it was
just the tip of the iceberg. Linux is hundreds of times bigger than
that and was developed by hundreds of smart people. Linus’s real
achievement was to lead these people and coordinate their work;
Linux is the shining result of their collective labor. (And Unix itself
was written by a small group of smart people at Bell Labs, not
entirely by Ken Thompson and Dennis Richie.)

On that same note, did Stallman personally write all of the Free
Software Foundation’s software? He wrote the first generation of
Emacs. But hundreds of others were responsible for bash, the GCC
tool chain, and all the rest of the software that runs on Linux. Steve
Jobs led an entire team that built the Macintosh, and while Bill Gates
is known for writing a BASIC interpreter for early home computers,
his bigger achievement was building a successful company around
MS-DOS. Yet they all became leaders and symbols of their collective
achievements.

And how about Michael Jordan?

4 ChApter 1

It’s the same story. We idolize him, but the fact is that he didn’t
win every basketball game by himself. His true genius was in the
way he worked with his team. The team’s coach, Phil Jackson,
was extremely clever—his coaching techniques are legendary: he
recognized that one player alone never wins a championship and so
he assembled an entire “dream team” around MJ. The team was a
well-oiled machine—at least as impressive as Michael himself.

So why do we repeatedly idolize the individual in these stories?
Why do people buy products endorsed by celebrities? Why do we
want to buy Michelle Obama’s dress or Michael Jordan’s shoes?

Celebrity is a big part of it. Humans have a natural instinct to locate
leaders and role models, idolize them, and attempt to imitate them.
We all need heroes for inspiration, and the programming world has
its heroes too. The phenomenon of “techie-celebrity” has almost
spilled over into mythology. We all want to write something world-
changing like Linux, or design the next brilliant programming
language.

Deep down we all secretly wish to be geniuses. The ultimate geek
fantasy is to be struck by an awesome new concept. You go into
your Bat Cave for weeks or months, slaving away at a perfect
implementation of your idea. You then “unleash” your software
on the world, shocking everyone with your genius. Your peers are
astonished by your cleverness. People line up to use your software.
Fame and fortune follow naturally.

But hold on: let’s do a reality check. You’re probably not a genius.

No offense, of course—we’re sure you’re a very intelligent guy or
gal. But do you realize how rare actual geniuses really are? Sure,
you write code, and that’s a tricky skill that probably puts you in
a bracket above a lot of the human population. But even if you are
a genius, it turns out that that’s not enough. Geniuses still make
mistakes, and having brilliant ideas and elite programming skills
doesn’t guarantee that your software will be a hit. What’s going to
make or break your career is how well you collaborate with others.

It turns out that this Genius Myth is just another aspect of our
insecurity. Most programmers are afraid to share work they’ve only
just started, because it means peers will see their mistakes and know

the myth OF the GenIuS prOGrAmmer 5

the author of the code is not a genius. To quote another programmer
from Ben’s blog:

I know I get SERIOUSLY insecure about people looking
before something is done. Like they are going to seriously
judge me and think I’m an idiot.

This is an extremely common feeling among programmers, and
the natural reaction is to hide in a cave and work, work, work.
Nobody will see your goof-ups; you still have a chance to unveil
your masterpiece when you’re done. Hide away until all of it is
perfect.

Another common motivation for holding your cards close to your
chest is the fear that another programmer might take your idea and
run with it before you get around to working on it. By keeping it
secret, you control the idea.

We know what you’re probably thinking now: so what? Shouldn’t
people be allowed to work however they want?

Actually, no. In this case we assert that you’re doing it wrong, and
it is a big deal. Here’s why.

Hiding Is Considered Harmful
If you spend all your time working alone, you’re increasing the risk
of failure and cheating your potential for growth.

First of all, how do you even know if you’re on the right track?

Imagine you’re a bicycle-design enthusiast, and one day you get a
brilliant idea for a completely new way to design a gear shifter. You
order parts and proceed to spend weeks holed up in your garage
trying to build a prototype. When your neighbor—also a bike
advocate—asks you what’s up, you decide not to talk about it. You
don’t want anyone to know about your project until it’s absolutely
perfect. Another few months go by and you’re having trouble
making your prototype work correctly. But because you’re working
in secrecy, it’s impossible to solicit advice from your mechanically
inclined friends.

Then one day your neighbor pulls his bike out of his garage with a
radical new gear-shifting mechanism. Turns out he’s been building

6 ChApter 1

something very similar to your invention, but with the help of some
friends down at the bike shop. At this point you’re exasperated.
You show him your work. He points out that your design had some
simple flaws—ones that might have been fixed in the first week if
you had shown him.

Working in isolation often leads to disappointment.

There are a number of lessons to learn here. If you keep your great
idea hidden from the world and refuse to show anyone anything
until the implementation is polished, you’re taking a huge gamble.
It’s easy to make fundamental design mistakes early on. You risk
reinventing wheels.1 And you forfeit the benefits of collaboration
too: notice how much faster your neighbor moved by working with
others? This is why people dip their toes in the water before jumping
in the deep end: you need to make sure that you’re working on the
right thing, you’re doing it correctly, and it hasn’t been done before.
The chances of an early misstep are high. The more feedback you
solicit early on, the more you lower this risk.2 Remember the tried-
and-true mantra of “Fail early, fail fast, fail often”—we’ll discuss
the importance of failure at length later in the book.

1 Literally, if you are, in fact, a bike designer.
2 We should note that sometimes it’s dangerous to get too much feedback too early

in the process, but we’ll cover that in a later chapter.

the myth OF the GenIuS prOGrAmmer 7

Early sharing isn’t just about preventing personal missteps and
getting your ideas vetted. It’s also important to strengthen what we
call the bus factor of your project.

Bus factor (noun): the number of people that need to get hit by a
bus before your project is completely doomed.

What’s your team’s bus factor?

How dispersed is the knowledge and know-how in your project?
If you’re the only person who understands how the prototype
code works, it may be nice job security, but it also means the
project is toast if you get hit by a bus. If you’re working with a
friend, however, you’ve doubled the bus factor. And if you’ve got
a small team designing and prototyping together, things are even
better—the project won’t be over when a team member disappears.
Remember: team members may not literally get hit by buses, but
other unpredictable life events still happen. Someone may get
married, have to move away, leave the company, or have to take
care of a sick relative. You need to future-proof a project’s success
by managing the bus factor.

Beyond the bus factor, there’s the issue of overall pace of progress.
It’s easy to forget that working alone is often a tough slog, much
slower than people want to admit. How much do you learn when
working alone? How fast do you move? The Web is a great dumping
ground of opinions and information, but it’s no substitute for actual
human experience. Working with other people directly increases

8 ChApter 1

the collective wisdom behind the effort. When you get stuck on
something absurd, how much time do you waste pulling yourself
out of the hole? Think about how different the experience would
be if you had a couple of peers to look over your shoulder and tell
you—instantly—how you goofed and how to get past the problem.
This is exactly why teams sit together (or do pair programming) in
software engineering companies: you often find yourself needing a
second pair of eyes.

Here’s another analogy. Think about how you work with your
compiler. When you sit down to write a large piece of software, do
you spend days or weeks writing code, then when you think it’s all
done and completely perfect, press the “compile” button for the
very first time? Of course you don’t. Can you imagine what sort
of disaster would result, trying to compile 50,000 virgin lines of
code? As programmers we work best in tight feedback loops: write
a new function, compile. Add a test, compile. Refactor some code,
compile. We get the typos and bugs fixed as soon as possible after
generating code. We want the compiler at our side for every little
step, playing wingman; some environments can even compile our
code as we type. This is how we keep code quality high and make
sure our software is evolving correctly bit by bit.

The same sort of rapid feedback loop is needed not just at the
code level, but at the whole-project level too. Ambitious projects
evolve quickly and have to adapt to changing environments as they
go. Projects run into unpredictable design obstacles, or political
obstacles, or simply discover that things aren’t working as planned.
Requirements morph unexpectedly. How do you get that feedback
loop so that you know the instant your plans or designs need to
change? Answer: by working in a team. Eric Raymond is often
quoted as saying, “Many eyes make all bugs shallow,” but a better
version might be, “Many eyes make sure your project stays relevant
and on track.” People working in caves awake to discover that
while their original vision may be complete, the world has changed
and made the product irrelevant.

the myth OF the GenIuS prOGrAmmer 9

Engineers and Offices
Twenty years ago conventional wisdom stated that for an engineer
to be productive, she needed to have her own office with a door that
closed. This was supposedly the only way she could have big uninter-
rupted slabs of time to deeply concentrate on writing reams of code.

We think that it’s not only unnecessary for most engineers3 to be in
a private office, it’s dangerous. Software today is written by teams,
not individuals, and a high-bandwidth, readily available connection
to the rest of your team is even more valuable than your Internet
connection. You can have all the uninterrupted time in the world,
but if you’re using it to work on the wrong thing, you’re wasting your
time. Walk into the offices of any fast-growing high-tech company that
started in the 21st century and you’ll find engineers clustered together
in shared cubicles (a.k.a., “bullpens”) or shared desk areas, but rarely
will you find them locked up in offices away from one another.

Of course, you’ll still need a way to filter out noise and interruptions,
which is why most teams we’ve seen have developed a way to com-
municate that they’re currently busy and that you should limit inter-
ruptions. We used to work on a team with a vocal interrupt protocol:
if you wanted to talk, you would say “breakpoint Mary” where Mary
was the name of the person you wanted to talk to. If Mary was at a
point where she could stop, she would swing her chair around and lis-
ten. If Mary was too busy, she’d just say “ack” and you’d go on with
other things until she finished with her current head state.

Other teams give out noise-canceling headphones to engineers to
make it easier to deal with the noise in the area—in fact, in many
companies the very act of wearing headphones is a common signal
that means “don’t disturb me unless it’s really important.” Still other
teams have tokens or stuffed animals that team members put on their
monitor to signify that they should be interrupted only in case of
emergency.

Don’t misunderstand us—we still think engineers need uninterrupted
time to focus on writing code, but we think they need a high band-
width, low-friction connection to their team even more.

3 We do however acknowledge that serious introverts likely need more peace,
quiet, and alone time than most people and may benefit from a more quiet envi-
ronment if not their own office.

10 ChApter 1

So what it boils down to is this: working alone is inherently riskier
than working with others. While you may be afraid of someone
stealing your idea or thinking you’re dumb, you should be much
more scared of wasting huge swaths of your time toiling away on
the wrong thing.

Sadly, this problem of “clutching ideas to the chest” isn’t unique
to software engineering—it’s a pervasive problem across all fields.
For example, professional science is supposed to be about the
free and open exchange of information. But the desperate need to
“publish or perish” and to compete for grants has had exactly the
opposite effect. Great thinkers don’t share ideas. They cling to them
obsessively, do their research in private, hide all mistakes along the
path, and then ultimately publish a paper making it sound like
the whole process was effortless and obvious. And the results are
often disastrous: they accidentally duplicated someone else’s work,
or they made an undetected mistake early on, or they produced
something that used to be interesting but is now regarded as useless.
The amount of wasted time and effort is tragic.

Don’t become another statistic.

It’s All About the Team
So let’s back up now and put all these ideas together.

The point we’ve been hammering is that in the realm of programming,
lone craftsmen are extremely rare—and even when they do exist,
they don’t perform superhuman achievements in a vacuum; their
world-changing accomplishment is almost always the result of a
spark of inspiration followed by a heroic team effort.

Creating a superstar team is the real goal, and is fiendishly difficult.
The best teams make brilliant use of their superstars, but the whole
is always greater than the sum of its parts.

Let’s put this idea into simpler words:

Software development is a team sport.

This may be a difficult concept at first, since it directly contradicts
our inner Genius Programmer fantasy. Try chanting it as a mantra.

the myth OF the GenIuS prOGrAmmer 11

Remember that software development is a team sport.

It’s not enough to be brilliant when you’re alone in your hacker’s
lair. You’re not going to change the world or delight millions of
computer users by hiding and preparing your secret invention. You
need to work with other people. Share your vision. Divide the labor.
Learn from others. Create a brilliant team.

Consider this: how many pieces of widely used, successful software
can you name that were truly written by a single person? (Some
people might say “LaTeX,” but it’s hardly “widely used,” unless
you consider the number of people writing scientific papers to be a
statistically significant portion of all computer users!)

We’re going to repeat this team-sport concept over and over
throughout the book. High-functioning teams are gold and the true
key to success. You should be aiming for this experience however
you can; that’s what this book is all about.

The Three Pillars
So the point about working in teams has been made. If teamwork is
the best route to producing great software, how does one build (or
find) a great team?

It’s not quite that simple. In order to reach collaborative nirvana,
you first need to learn and embrace what we call the “three pillars”
of social skills. These three principles aren’t just about greasing the

12 ChApter 1

wheels of relationships; they’re the foundation on which all healthy
interaction and collaboration are based.

Humility

You are not the center of the universe. You’re neither omni-
scient nor infallible. You’re open to self-improvement.

Respect

You genuinely care about others you work with. You treat
them as human beings, and appreciate their abilities and
accomplishments.

Trust

You believe others are competent and will do the right thing,
and you’re OK with letting them drive when appropriate.4

Together, we refer to these principles as HRT. We pronounce this as
“heart” and not “hurt” because it’s all about decreasing pain and
not about injuring people. In fact, our main thesis is built directly
on these pillars:

Almost every social conflict can ultimately be traced back to
a lack of humility, respect, or trust.

It may sound implausible at first, but give it a try. Think about
some nasty or uncomfortable social situation in your life right now.
At the basest level, is everyone being appropriately humble? Are
people really respecting one another? Is there mutual trust?

We believe these principles are so important that we’ve even
structured this book around them.

This book begins with you: getting you to embrace HRT and
really internalize what it means to put HRT at the center of your
interactions. That’s what this first chapter is about. From there we
create ever-expanding circles of influence.

In Chapter 2 we discuss the challenge of building a team based on
the three pillars. Creating a team culture is the critical next step to
success—this is the “dream team” discussed earlier.

4 This is incredibly difficult if you’ve been burned in the past by delegating to
incompetent people.

the myth OF the GenIuS prOGrAmmer 13

We then examine people who are interacting with your team on a
daily basis, but may not be part of the core team culture. These may
be coworkers from other teams, or just volunteers offering to help
on your project. Many of them not only disregard HRT, but they
can be downright poisonous! Learning to defend your team from
them is the first order of business. Removing their fangs and sucking
them into your culture should be the ultimate goal, however. It’s a
great way to expand a team.

Embrace HRT for collaborative nirvana.

Most teams work within a larger company, and this environment
can often be just as much of an impediment as poisonous people.
Learning how to navigate these organizational obstacles can be the
difference between launching a product and getting that very same
product canceled.

Finally, we consider the users of your software. Sometimes we forget
they exist, but they are the lifeblood of your project. Without users,

14 ChApter 1

your software has no purpose. The same HRT principles that thrive
in your team can and should be applied to the way you interact
with your users, and the benefits reaped are tremendous.

Let’s pause for a moment.

When you picked up this book, you probably weren’t thinking
you were signing up for some sort of weekly support group. We
empathize. Dealing with social problems can be difficult. People are
messy, unpredictable, and often annoying to interface with. Rather
than putting energy into analyzing social situations and making
strategic moves, it’s tempting to write off the whole effort. It’s much
easier to hang out with a predictable compiler, isn’t it? Why bother
with the social stuff at all?

Here’s a quote from a famous lecture by Richard Hamming:5

By taking the trouble to tell jokes to the secretaries and being
a little friendly, I got superb secretarial help. For instance,
one time for some idiot reason all the reproducing services at
Murray Hill were tied up. Don’t ask me how, but they were.
I wanted something done. My secretary called up somebody
at Holmdel, hopped [into] the company car, made the hour-
long trip down and got it reproduced, and then came back. It
was a payoff for the times I had made an effort to cheer her
up, tell her jokes and be friendly; it was that little extra work
that later paid off for me. By realizing you have to use the
system and studying how to get the system to do your work,
you learn how to adapt the system to your desires.

The moral is this: do not underestimate the power of playing the
social game. It’s not about tricking or manipulating people; it’s
about creating relationships to get things done, and relationships
always outlast projects.

HRT in Practice
All of this preaching about humility, respect, and trust sounds like
sermon material. Let’s come out of the clouds and think about
how to apply these ideas in real-life situations. We’re looking for

5 “You and Your Research,” http://www.cs.virginia.edu/~robins/YouAndYourResearch.
pdf

file:///Users/nancy/WORK/Dropbox/20120608_ORA_TeamGeek/1_incoming/www.cs.virginia.edu/~robins/YouAndYourResearch.pdf
file:///Users/nancy/WORK/Dropbox/20120608_ORA_TeamGeek/1_incoming/www.cs.virginia.edu/~robins/YouAndYourResearch.pdf

the myth OF the GenIuS prOGrAmmer 15

practical suggestions and so we’re going to examine a list of specific
behaviors and examples you can start with. Many of them may
sound obvious at first, but once you start thinking about them you’ll
notice how often you (and your peers) are guilty of not following
them.

Lose the Ego

OK, this is sort of a simpler way of telling someone without enough
humility to lose his ‘tude. Nobody wants to work with someone
who consistently behaves like he’s the most important person in the
room. Even if you know you’re the wisest person in the discussion,
don’t wave it in people’s faces. For example, do you always feel like
you need to have the first or last word on every subject? Do you feel
the need to comment on every detail in a proposal or discussion? Or
do you know somebody who does these things?

Note that “being humble” is not the same as saying one should be
an utter doormat: there’s nothing wrong with self-confidence. Just
don’t come off like a know-it-all. Even better, think about going for a
“collective” ego instead; rather than worrying about whether you’re
personally awesome, try to build a sense of team accomplishment
and group pride. The Apache Software Foundation has a long
history of creating communities around software projects; these
communities have incredibly strong identities and reject people
who are more concerned about self-promotion.

Ego manifests itself in many ways, and a lot of the time it
can get in the way of your productivity and slow you down.
Here’s another great story from Hamming’s lecture that
illustrates this point perfectly:

“John Tukey almost always dressed very casually. He would
go into an important office and it would take a long time
before the other fellow realized that this is a first-class man
and he had better listen. For a long time John has had to
overcome this kind of hostility. It’s wasted effort! I didn’t say
you should conform; I said, ‘The appearance of conforming
gets you a long way.’ If you chose to assert your ego in any
number of ways, ‘I am going to do it my way,’ you pay a
small steady price throughout the whole of your professional
career. And this, over a whole lifetime, adds up to an
enormous amount of needless trouble. […] By realizing you

16 ChApter 1

have to use the system and studying how to get the system
to do your work, you learn how to adapt the system to your
desires. Or you can fight it steadily, as a small, undeclared
war, for the whole of your life.”

Learn to Both Deal Out and Handle Criticism

Joe started a new job as a programmer. After his first week he really
started digging into the code base. Because he cared about what
was going on, he started gently questioning other teammates about
their contributions. He sent simple code reviews by email, politely
asking about design assumptions or pointing out places where logic
could be improved. After a couple of weeks he was summoned to
his director’s office. “What’s the problem?” Joe asked. “Did I do
something wrong?” The director looked concerned: “We’ve had a
lot of complaints about your behavior, Joe. Apparently you’ve been
really harsh toward your teammates, criticizing them left and right.
They’re upset. You need to tone it down.” Joe was utterly baffled. In
a strong culture based on HRT, Joe’s code reviews should have been
welcomed and appreciated by his peers. In this case, however, Joe
should have been more sensitive to the team’s widespread insecurity
and should have used subtler means to introduce code reviews into
the culture.

Criticism is almost never personal in a professional software
engineering environment—it’s usually just part of the process of
making a better product. The trick is to make sure you (and those
around you) understand the difference between constructive criticism
of someone’s creative output and flat-out assaults against someone’s
character. The latter is useless—it’s petty and nearly impossible to
act on. The former is always helpful and gives guidance on how
to improve. And most importantly, it’s imbued with respect: the
person giving the constructive criticism genuinely cares about the
other person and wants her to improve herself or her work. Learn
to respect your peers and give constructive criticism politely. If you
truly respect someone, you’ll be motivated to choose tactful, helpful
phrasing—a skill acquired with much practice.

On the other side of the conversation, you need to learn to accept
criticism as well. This means not just being humble about your
skills, but trusting that the other person has your best interests (and
those of your project!) at heart and doesn’t actually think you’re

the myth OF the GenIuS prOGrAmmer 17

an idiot. Programming is a skill like anything else. It improves with
practice. If a peer pointed out ways in which you could improve
your juggling, would you take it as an attack on your character
and value as a human being? We hope not. In the same way, your
self-worth shouldn’t be connected to the code you write. To repeat
ourselves: you are not your code. Say that over and over. You are
not your code. You need to not only believe it yourself, but get your
coworkers to believe it too.

Don’t equate your self-worth with your code quality.

For example, if you have a possibly insecure collaborator, here’s
what not to say: “Man, you totally got the control flow wrong on
that method there. You should be using the standard xyzzy code
pattern like everyone else.” This feedback is full of antipatterns:
you’re telling someone he’s “wrong” (as if the world were black
and white!), demanding he change something, and accusing him
of creating something that goes against what everyone else is
doing (making him feel stupid). The response is going to be overly
emotional, coming from someone put on the defense.

A better way to say the same thing might be, “Hey, I’m confused
by the control flow in this section here. I wonder if the xyzzy code
pattern might make this clearer and easier to maintain?” Notice
how you’re using humility to make the question about you, not
him. He’s not wrong; you’re just having trouble understanding

18 ChApter 1

the code. The suggestion is merely offered up as a way to clarify
things for poor little you, and possibly helping the project’s long-
term sustainability goals. You’re also not demanding anything—
you’re giving your collaborator the ability to peacefully reject the
suggestion. The discussion stays in the realm of the code itself and
isn’t about anyone’s value or coding skills.

Fail Fast; Learn; Iterate

There’s a well-known (and clichéd) urban legend in the business
world about a manager who makes a mistake and loses an
impressive $10 million. He dejectedly goes into the office the next
day and starts packing up his desk, and when he gets the inevitable
“the CEO wants to see you in his office” call, he trudges into the
CEO’s office and quietly slides a piece of paper across the desk to
the CEO.

“What’s this?” asks the CEO.

“My resignation,” says the exec. “I assume you called me in here
to fire me.”

“Fire you?” responds the CEO, incredulously. “Why would I fire
you? I just spent $10 million training you!”6

It’s an extreme story, to be sure, but the CEO in this story
understands that firing the exec wouldn’t undo the $10 million loss,
and it would compound it by losing a valuable executive who you
can be damned sure won’t make that kind of mistake again.

The two of us work at Google, and one of our favorite mottoes
of Google’s is “Failure is an option.” It’s widely recognized that if
you’re not failing now and then, you’re not being innovative enough
or taking enough risks. Failure is viewed as a golden opportunity to
learn and improve for the next go-around. In fact, Thomas Edison
is often quoted as saying, “If I find 10,000 ways something won’t
work, I haven’t failed. I am not discouraged, because every wrong
attempt discarded is another step forward.”

Google often follows the concept of “not hiding in the cave until
it’s perfect” (which we discussed previously): as soon as something

6 A dozen variants of this legend can be found on the Web, attributed to different
famous managers.

the myth OF the GenIuS prOGrAmmer 19

is vaguely usable, it gets released in raw form to the public. This is
what Google Labs was all about. It becomes apparent very quickly
where the successes and failures are, and so the programming team
is expected to learn, iterate, and push a new version out as quickly
as possible. The downside is that Google occasionally gets teased
for having things like Gmail in “beta” for four-plus years. The
upside is the ability to maneuver and adapt quickly, producing an
amazing product in a very short amount of time. All it requires is
some humility—that it’s OK to show imperfect software to users,
and some trust that your users really do appreciate your efforts and
are eager to see rapid improvements.

The key to learning from your mistakes is to document your failures.
Write up “postmortems,” as they’re often called in our business.
Take extra care to make sure the postmortem document isn’t just
a useless list of apologies or excuses—that’s not its purpose. A
proper postmortem should always contain an explanation of what
was learned and what is going to change as a result of the learning
experience. Then make sure you put it in an easy-to-find place and
really follow through on the proposed changes. Remember that
properly documenting failures also makes it easier for other people
(present and future) to know what happened and avoid repeating
history. Don’t erase your tracks—light them up like a runway for
those who follow you!

A good postmortem should include the following:

•	 A brief summary

•	 A timeline of the event, from discovery through investigation
to resolution

•	 The primary cause of the event

•	 Impact and damage assessment

•	 A set of action items to fix the problem immediately

•	 A set of action items to prevent the event from happening again

•	 Lessons learned

Leave Time for Learning

Cindy was a superstar—a software engineer who had truly
mastered her specialized area. She was promoted to technical lead,
the responsibility increased, and she rose to the challenge. Before
long, she was mentoring everyone around her and teaching them
the ropes. She was speaking at conferences on her subject and pretty
soon ended up in charge of multiple teams. She absolutely loved
being the “expert” all the time. And yet, she started to get bored.
Somewhere along the way she stopped learning new things. The
novelty of being the wisest, most experienced expert in the room
started to wear thin. Despite all of the outward signs of mastery
and success, something was missing. One day she got to work and
realized that her chosen field simply wasn’t so relevant anymore;
people had moved on to other topics of interest. Where did she go
wrong?

Let’s face it: it is fun to be the most knowledgeable person in the
room, and mentoring others can be incredibly rewarding. The
problem is that once you reach a local maximum on your team,
you stop learning. And when you stop learning, you get bored.
Or accidentally become obsolete. It’s really easy to get addicted to
being a leading player; but only by giving up some ego will you ever
change directions and get exposed to new things. Again, it’s about
increasing humility and being willing to learn as much as teach. Put
yourself outside your comfort zone now and then; find a fishbowl
with bigger fish than you and rise to whatever challenges they hand
out to you. You’ll be much happier in the long run.

Learn Patience

Years ago, Fitz was writing a tool to convert CVS repositories to
Subversion (and later, Git), and, due to the vagaries of RCS and
CVS, he kept unearthing bizarre bugs with invalid RCS files that
CVS would happily devour. Since his longtime friend and coworker
Karl knew CVS and RCS quite intimately, he and Karl decided they
should work together to fix these bugs.

A problem arose when they started pair programming together: Fitz
was a bottom-up engineer who was content to dive into the muck and
dig his way out by trying a lot of things quickly and skimming over
the details. Karl, however, was a top-down engineer who wanted to

the myth OF the GenIuS prOGrAmmer 21

get the full lay of the land and dive into the implementation of almost
every method on the call stack before proceeding to tackle the bug.
This resulted in some epic interpersonal conflicts, disagreements,
and the occasional heated argument. It took a herculean effort,
focus, and no small amount of HRT for Fitz and Karl to accomplish
the task at hand. In the end, HRT not only helped save the project,
but it also saved their friendship.

Be Open to Influence

The more you are open to influence, the more you are able to
influence; the more vulnerable you are, the stronger you appear.
These statements sound like bizarre contradictions. But everyone
can think of someone they’ve worked with who is just maddeningly
stubborn. No matter how much people try to persuade him, he
digs his heels in even more. What eventually happens to such team
members? In our experience, they end up just getting “routed
around” like an obstacle everyone takes for granted. People stop
listening to their opinions or objections. You certainly don’t want
that happening to you, so keep this idea in your head: it’s OK for
someone else to change your mind. Choose your battles carefully.
Remember that in order to be heard properly, you first need to listen
to others. In the case of being influenced, this listening should take
place before you’ve put a stake in the ground or firmly declared that
you’ve decided on something—if you’re constantly changing your
mind, people will think you’re wishy-washy.

On the subject of vulnerability, this seems a bit strange at first too.
If someone admitted she was ignorant of the topic at hand or didn’t
know how to solve a problem, what sort of credibility would she
have in a group? Vulnerability is a show of weakness, and that
destroys confidence, right?

Not true. Admitting you’ve made a mistake or you’re simply out of
your league is a way to increase your status over the long run. In
fact, it encompasses all of HRT: it’s an outward show of humility,
it’s about accountability and taking responsibility, it’s a signal that
you trust others’ opinions, and in return, people end up respecting
your honesty and strength. Sometimes the best thing you can do is
just to say, “I don’t know.”

22 ChApter 1

Honesty and humility are not kryptonite.

Consider professional politicians; they’re notorious for never
admitting error or ignorance, even when it’s patently obvious
that they’re wrong or unknowledgeable about a subject. And for
that reason most people don’t believe a word that politicians say.
This behavior exists primarily because politicians are constantly
under attack by their opponents. When you’re writing software,
however, it’s unnecessary to live in a constant state of defense—
your teammates are collaborators, not competitors.

Next Steps
If you’ve made it this far, you’re well on your way to mastering
the art of “playing well with others.” You’ve got to start with
examining and meditating on your own behaviors. Once you’ve
incorporated these strategies into your daily life, you’ll find that

the myth OF the GenIuS prOGrAmmer 23

collaboration will become much more natural and your engineering
productivity will begin to noticeably increase.

The important changes begin with you and then spread outward to
others. In the next chapter, we’re going to talk about how to create
a culture of HRT within your immediate team.

24

 25

C H A P T E R 2

Building an Awesome
Team Culture

Team cultures are incredibly varied and reflect a wide range of
values and priorities. Some promote team success, and others
promote team failure on a grand scale. However, even among the
cultures that lead to successful teams, some are incredibly efficient
and focus the majority of your team’s effort on writing software,
while others provide a great deal of distraction from the task at
hand. In this chapter we’ll talk about culture, with a strong focus
on various communication techniques that contribute to success.
We’ll identify how these techniques can be used to write software
more efficiently with a team of great engineers.

What Is Culture?
When you hear the word culture, your thoughts typically wander
to either an evening at the opera or the dish of jelly growing
bacteria that you had back in high school biology. It turns out that
engineering team culture isn’t all that different from the latter.

26 ChApter 2

You need a good starter culture.

If you’ve ever had a really delicious piece of sourdough bread and
took the time to hunt down the person who baked it, you would
find that the key ingredient to the bread is a starter containing
yeast and lactobacillus bacteria living on a diet of flour and water.
The yeast is what makes the bread rise, and the bacterium is what
gives the bread that amazing tangy, sour flavor. However, not all
lactobacillus strains are alike, and some create a more desirable
flavor than others, so when a baker finds a starter (i.e., a bacteria
culture/yeast mixture) that gives a really great sourdough flavor,
she’ll take care to maintain and grow the same bacterial culture by
adding more flour and water to it. She’ll then take small amounts
of the starter and inoculate the ingredients for a loaf of bread, and
voilà, she’s got a great loaf of sourdough! This works because the
culture in the starter not only creates the taste that she wants, but is

BuIlDInG An AWeSOme teAm Culture 27

strong enough to overtake any other wild strains of yeast or bacteria
that might be in the bread ingredients or the air of the bakery.

A good starter will inoculate your culture into newcomers.

Your team’s culture is much like a good loaf of sourdough: your
starter culture (your founders) inoculates your dough (your
newcomers) with the culture, and as the yeast and bacteria (your
team members) grow, out pops a great loaf of bread (your team). If
your starter culture is strong, it’s more than capable of overcoming
any undesirable “wild strains” of culture that a newcomer might
bring with him.1 If your starter culture is weak, your team is
vulnerable to unknown culture strains that newcomers might bring
along. Unknown cultures bring with them unpredictable results, so
it’s better to start with a known starter culture.

But a team’s culture isn’t just the way in which team members write
code or treat one another: it’s a set of shared experiences, values,
and goals that is unique to every engineering team we’ve ever been
on or observed. The founding members of a team or company
define the biggest part of a team’s culture, but it will continue to
change and develop over the life of the team.

The elements that make up a team culture vary wildly. Some are
directly relevant to writing software, like code reviews, test-driven
development, and the value you place on having good design docs
before starting to crank out reams of code. Some elements might be
more social, like going out to a particular restaurant for lunch every

1 Of course, a strong culture always has the option of incorporating any desirable
“wild strains” that a newcomer brings in with him.

28 ChApter 2

Thursday, or going out for drinks at a favorite bar on Fridays. Some
of them might seem completely silly or outlandish to an outsider:
the Google Pittsburgh engineering office used to be located next to
a freight train track, and every time a train would come by (mind
you, a very loud train), everyone would jump up and shoot Nerf
darts at one another.2 All of these things make up a team’s culture
and affect the team’s productivity and ability to attract and retain
good team members.

Take a look at any wildly successful software company today—
Google, Apple, Microsoft, Oracle—and you’ll find that each
company has a very different culture: one that has its roots in
the culture that was set by the founders and earliest employees.
As these companies have grown and matured, their cultures have
evolved and changed, but they’ve still retained a unique identity
that trickles down to just about every aspect of how they develop
products, treat their employees, and compete with other companies.

Why Should You Care?
In short, you should care because if you don’t put effort into
building and maintaining your culture, your team will eventually
be overtaken by a strong personality who cultivates his culture in
your team. This culture may turn out to be a productive, healthy
culture that cranks out piles of great code, but more often than not,
it won’t turn out as such, and you’ll suddenly find a lot of your
energy that used to go into designing and writing code is suddenly
expended in arguments and infighting. Beyond that, it’s important
to have a culture that your team values and is willing to defend. If
your team doesn’t value your culture, not only is it difficult to build
a strong team identity and collective pride in your work, but also
it’s very easy for a newcomer to change your culture into something
that sucks.

The first mistake most engineers make is to assume the team leader
curates the culture of a team. Nothing could be further from the
truth: while the founders and leads usually tend to the health of your
culture, every member of your team participates in the culture and
bears some responsibility for defining, maintaining, and defending

2 This scared the hell out of Fitz the first time he visited the Google Pittsburgh office.

BuIlDInG An AWeSOme teAm Culture 29

the culture. When someone joins your team, she doesn’t pick up the
culture from the team leader alone, but from every team member
she works with. For example, when you carefully review your new
team member’s code and explain to her why your team writes code
in a certain way, she’ll quickly figure out what the team values in
their code base. She’ll also learn about your culture from observing
how the rest of your team works, interacts, and deals with conflict.

A “strong culture” is one that is open to change that improves it, yet
is resistant to radical change that harms it. The team cultures that are
most successful are those that focus the majority of the team’s effort
on shipping great software. If your team’s primary focus is anything
other than that (e.g., partying, attending meetings, practicing one-
upmanship) your team may bond tightly, but you won’t get very
much software written. If you’re happiest when writing code and
shipping product, it’s definitely in your best interest to find a team
that values that, and to work to maintain that environment. It’s
not that you can’t ship product without a strong and productive
culture, but it’s going to cost you a lot more time and energy to ship
product without one. A strong culture gives you focus, efficiency,
and strength, and these things make for a happier team.

The interesting thing about team culture is that, if you build a
strongly defined one, it will become self-selecting. In the open source
world, projects that are built on HRT and focused on writing clean,
elegant, maintainable code will attract engineers who are interested
in—surprise, surprise—working with people they respect and trust,
and writing clean, elegant, maintainable code. If, however, your
team is built on a culture of aggression, hazing, and ad hominem
attacks, you’re going to wind up attracting more people like that.

We’ve seen self-selecting cultures many times in the Apache Software
Foundation: the ASF is a collection of software development teams
that are community-based and that run on a consensus model.
Many times a new contributor will join the mailing list and, through
either ignorance or malice, will behave in a manner contrary to
the team’s culture. Community members will usually attempt to
educate the newcomer (sometimes gently, sometimes, um, well,
“not so gently”), and if the newcomer is not interested in how the
ASF team does things, he’ll usually head off in search of a more
compatible project.

30 ChApter 2

In the corporate world, teams self-select through the hiring process,
whether implicitly in the skills and strengths that are valued in
potential candidates, or explicitly by considering culture fit as part
of the hiring process. Google takes the explicit approach in its hiring
process as it looks specifically for culture fit when interviewing
candidates: if Google interviews someone who in all respects looks
like a rock-star engineer, but is incapable of working with a team of
people or requires a very structured environment, the interviewers
will raise a red flag in their feedback.

If you don’t pay attention to culture fit as part of the hiring process
and hire someone who isn’t a fit, you’ll wind up expending a
tremendous amount of energy either getting the new hire to fit in or
getting him to leave your team. Regardless of the result, the cost is
high enough that it’s definitely worthwhile to make sure new team
members will work well with your existing team.

The only way to make sure new team members will be
a culture fit is to interview for it. Many companies (like
Google) have culture fit as one of the criteria that inter-
viewers look out for as they’re speaking to a candidate.
Some companies take it even further in their quest to avoid
a hiring mistake: they have a separate interview for culture
fit before doing the technical interviews because they don’t
want to even consider people who would fit technically but
not culturally. This sort of process involvement is critical
for creating and preserving a strong culture and it doesn’t
happen by accident; in fact, it is usually consciously created
by the company’s founders and early employees.

Culture and People
Writing software is different from simply knocking out widgets on
an assembly line. Some types of work can be done with a few days
of training and some basic tools, and if your worker quits and leaves
(or doesn’t work out), you just drop another worker in and on you
go. In the assembly line environment, employees are accomplishing
simple tasks, often by rote, with little creative-thinking or problem-
solving skills required. In the software world, a great deal of creative

BuIlDInG An AWeSOme teAm Culture 31

thinking is required of engineers working on a product,3 and if you
want a great product, you need great engineers. If you want great
engineers to do great work (and to stick around), you need to create
a culture for them that allows them to safely share ideas and have a
voice in the decision-making process.

If you want to get excellent engineers to work on your team, you
need to start by hiring, well, some great engineers! That may sound
weird, but the fact of the matter is that most great engineers want
to be on teams with other great engineers. Many great engineers
we know gravitate toward teams where they can learn from giants
of the industry.4 So how do you attract these engineers in the first
place?

For starters, they’re going to want to be able to not only contribute
to the development of your product, but also participate in
the product’s decision-making process, and that usually means
some level of consensus-driven management. In the case of top-
down management, the alpha engineer is the team lead and lesser
engineers are hired as team members. This is because subservient
team members cost less and are easier to push around. And you’re
going to have a hard time finding great engineers to be on this team
because, after all, what really great engineer wants to ride the bus
when she can drive the bus at another company? But in the case of
consensus-driven management, the entire team participates in the
decision-making process.

Many people hear “consensus-based team” and immediately think
of a bunch of hippies singing “Kumbaya” around a campfire
and never making a decision or getting anything done, but that
stereotype is symptomatic of a dysfunctional team much more than
a consensus-based team. What we mean by “consensus” is that
everyone has a strong sense of ownership and responsibility for the
product’s success and that the leaders really listen to the team (with
an emphasis on the “respect” component of HRT). This may mean

3 Some people think they can hire a whiz-bang architect and a bunch of medio-
cre programmers and create a good product. We think you can do that, but it’s
considerably less exciting and fun than working with a team of great people who
inspire, challenge, and teach you.

4 Great engineers also demand great team leaders, because crappy leaders not only
tend to be too insecure to deal with great engineers, but also tend to boss people
around.

32 ChApter 2

there are times when extended discussion and reflection is what the
product needs to succeed, and there are other times when the team
agrees they need to move quickly. In the latter case, team members
may decide to entrust a great deal of the nitty-gritty day-to-day
decision-making to one or more team leads.5 In order for this to
happen, the team as a whole needs to agree on the general mission
of the team, and believe it or not, the key to that is the development
of a team mission statement (more on that later in this chapter).

Just as important as your team’s decision-making process is the
manner in which team members treat one another, because this is
more self-selecting than anything else. If your team has a culture of
chest thumping and yelling and screaming at one another, the only
people you’ll attract (and retain) are aggressive types who feel right
at home in this environment composed of strong individual egos
(in fact, most of the women we know find this kind of environment
especially off-putting). If you create a culture of HRT where team
members treat one another kindly and take the effort to give
constructive criticism, you’ll not only attract a much larger set
of people, but you’ll also spend a great deal more of your energy
writing software. Having a strong team ego6 is good; a team totally
eclipsed by individual egos is a recipe for disaster. We’ll discuss how
to prevent this sort of situation in Chapter 4.

Constructive criticism is essential to the growth and development of
any engineering team. It requires a certain amount of self-confidence
to take any kind of criticism, and we think constructive criticism
is the easiest kind to receive. On the downside, it’s a lot harder
to give someone constructive criticism than to simply lambast her
or ridicule something she did. Of course, we realize it’s incredibly
difficult to solicit and then receive constructive criticism from most
people—they assume that when you ask them to criticize your
work, you’re only looking for compliments and assurance. If you
can find friends or colleagues who will constructively criticize your
work when you ask them, hang on to these people because they’re
worth their weight in unobtainium.

5 When consensus can’t be reached, some teams have their leads decide, while
other teams put it to a vote. The process your team uses is less important than
having a process and sticking with it when there’s conflict.

6 In other words, team pride.

BuIlDInG An AWeSOme teAm Culture 33

If you’re interested in improving your work or fixing your own
personal bugs, these very friends and colleagues are the ones that
can make you aware of things you do that might be hindering
your effectiveness as a productive engineer. Unless you have a
truly remarkable level of self-awareness or introspection, without
criticism, you’ll just go on making the same mistakes no one wants
to tell you about—think of this as the career equivalent of someone
telling you you’ve got spinach in your teeth. For example, in the
process of going to press with this book, we’ve had no fewer than
a dozen people look at it and give us constructive criticism on our
writing, and most of it was incredibly detailed and completely
invaluable. Regardless of whether you think the book is good or
bad, it would have been considerably worse if we had ignored this
valuable feedback or been afraid to ask for it.

Aggressive people can (usually) get along fine in a quieter
environment, but quieter, more introverted people rarely excel (or
enjoy working) in an aggressive environment—it’s not only harder
to hear their voices over the noise, but it also tends to discourage
them from being active participants.7 If you’re looking for a culture
that allows the broadest range of people to work most efficiently,
you could do a lot worse than building that culture on humility,
respect, and trust.

Calm, easygoing cultures built on respect are more vulnerable
to disruption by aggressive people than aggressive cultures are
vulnerable to disruption from more easygoing people. Easygoing
cultures need to be aware of this and not let the aggressive newcomer
take over, typically by refusing to engage this person in an aggressive
tone. In some cases, one or more of the more senior team members
may have to meet the aggressive newcomer head-on to prevent her
from harming an easygoing team culture. Again, we’ll talk a lot
more about how to deal with these sorts of “poisonous people” in
Chapter 4.

7 See Susan Cain’s excellent TED Talk, “The Power of Introverts” (http://www.
youtube.com/watch?v=c0KYU2j0TM4), or her book, Quiet: The Power of Intro-
verts (Crown).

http://www.youtube.com/watch?v=c0KYU2j0TM4
http://www.youtube.com/watch?v=c0KYU2j0TM4

34 ChApter 2

Communication Patterns of Successful Cultures
Communication isn’t typically the strong point of most engineers,
who would rather spend an afternoon with a (predictable, logical)
compiler than spend three minutes with a (unpredictable, emotional)
human being. In many cases, engineers see communication work as
an obstacle to be overcome on the road to writing more code, but
if your team isn’t in agreement or is uninformed, there’s no way to
know if you’re writing the right code in the first place.

Engineers often prefer the company of predictable, logical people.

If you examine any successful, efficient engineering culture, you’ll
find high value placed on numerous channels of communication,
such as mailing lists, design docs, mission statements, code
comments, production how-tos, and more. It takes considerable
effort to make sure everyone on a team agrees on the team’s direction
and understands exactly what the team needs to do. All this effort,
however, is an investment that pays off in increased productivity
and team happiness.

A good general rule around communication is to include as few
people as necessary in synchronous communication (like meetings),
and to go for a broader audience in asynchronous communication
(like email). But most importantly, you should make certain that

BuIlDInG An AWeSOme teAm Culture 35

all information is available to as many people as possible in your
project’s documentation. Let’s cover the primary communication
mechanisms you’ll find yourself using in the process of writing
software with a team. Some of these may seem obvious, but there
are many nuances that make them worth reviewing. One thing is
certain: if you don’t expend any effort on good communication,
you’ll waste considerable effort doing work that’s either unnecessary
or already being done by other members of your team.

High-Level Synchronization
At the highest level, the team needs to keep common goals in sync
and follow best practices around communicating their progress.

The Mission Statement—No, Really

When you hear someone say “mission statement,” the odds are good
that the first thing that springs to mind are the insipid, overhyped,
marketing-speak mission statements that are bandied about by a lot
of big companies. An example is the following mission statement
from a very large telecommunications company that will remain
nameless:

We aspire to be the most admired and valuable company in
the world. Our goal is to enrich our customers’ personal lives
and to make their businesses more successful by bringing to
market exciting and useful communications services, building
shareowner value in the process.

Oddly enough, I’ve yet to meet anyone who admires that company!
Here’s another example from another major corporation:

Providing solutions in real time to meet our customers’
needs.

What does that even mean? It could mean absolutely anything at
all—if we worked for that company, we wouldn’t know if it was
more important to write software, fix a leaky pipe, or deliver a
pizza. It’s this kind of corporate doublespeak that gives mission
statements a bad name.

For an engineering team, writing a mission statement is a way to
concisely define the direction and limit the scope of your product.
Writing a good mission statement takes some time and effort, but it

36 ChApter 2

can potentially save you years of work by clarifying what your team
should and shouldn’t8 be working on.

Several years ago, when Google decided to move development of
the Google Web Toolkit (GWT) to an open source project, we acted
as the team mentor. We reviewed the many differences between
open and closed source development, paying specific attention to
the difficulties of designing, discussing, and writing software in an
environment where anyone can poke his nose in to offer an opinion,
contribute a patch, or criticize the most minute aspect of your
product.9 After going over these challenges, we told the team they
needed to come up with a mission statement as a way to describe to
the public at large what their product goals (and nongoals!) were.

Some of the engineers balked at this for many of the reasons outlined
earlier, but others seemed curious, and the team lead seemed to
think it was a great idea. However, when we sat down to start
writing the mission statement, a lot of debate about the content,
substance, and style of the mission statement ensued. After a great
deal of discussion (and a few more meetings), the team came up
not only with a great, concise mission statement, but also an entire
document called “Making GWT Better”10 explaining the statement
phrase by phrase. They even included a section that described what
the project’s nongoals were. Here’s the mission statement:

GWT’s mission is to radically improve the web experience
for users by enabling developers to use existing Java tools to
build no-compromise AJAX for any modern browser.

There’s a ton of substance packed into that sentence, and we think
it’s an excellent example of a mission statement: it includes both a
direction (improve the web experience . . . by enabling developers)
and a scope limiter (Java tools). Several years later we were having
dinner with the team lead, and Fitz told him how thankful we were
that he had supported us so strongly in our effort to get the team

8 We can’t stress enough how important this is—saying no to all of the distractions
is what keeps you focused.

9 We’ve often likened writing open source software to building card houses on a
trampoline. It takes a steady hand, a lot of patience, and a willingness to yell at
people who leap before looking.

10 “Making GWT Better” is located at http://code.google.com/webtoolkit/making-
gwtbetter.html and is worth a read as a model mission statement document.

http://code.google.com/webtoolkit/makinggwtbetter.html
http://code.google.com/webtoolkit/makinggwtbetter.html

BuIlDInG An AWeSOme teAm Culture 37

to write a mission statement. He responded that he had actually
thought the entire exercise was a waste of time when we first
proposed it, but that once he started debating it with the team, he
discovered something he’d never known: His lead engineers did not
agree on the direction of the product!

In this case, writing a mission statement forced them to confront
their differences and come to an agreement on their product’s
direction, a problem that could have slowed down (or stopped)
development of the product as time went on. They posted their
mission statement on the Web, and not only did the entire team
have a laser focus on what they wanted to do with their product, but
it saved them months of time arguing with potential contributors
about the product’s direction—they just pointed newcomers to
“Making GWT Better” and most questions were answered.

A mission statement helps your team confront differences and come to
an agreement.

As your project progresses, the mission statement keeps things
on track. It shouldn’t become an insurmountable impediment to
change, however. If radical changes happen to the environment or
business plan (say, at a startup company), software team members
need to be honest with themselves and reevaluate whether the
mission still makes sense. Changing a constitution is a deliberately
difficult process, as it prevents people from doing so whimsically.
But in dramatic times it’s at least possible to change it and it should
be considered. If a company or product pivots suddenly, the mission
statement needs to keep up.

38 ChApter 2

Efficient Meetings

Most engineers would classify meetings as a necessary evil. While
they can be highly effective when used skillfully, they’re frequently
abused, usually disorganized, and almost always too long. We like
our meetings like we like our sewage treatment plants: few, far
between, and downwind. So we’ll keep this section brief and just
cover team meetings.

Let’s start with the most dreaded meeting of all: the standing
meeting. This meeting usually takes place every week, and should
absolutely be kept to basic announcements and introductions—
going around the room for a status update from every attendee
(whether they have something important to add or not) is a recipe
for wasted time, rolling eyes, and a burning desire to punch yourself
in the throat just to make it end. Anything worth deeper discussion
should take place after the meeting, with only the relevant people
sticking around for it. The key to making this meeting work is
that people should be happy to leave the meeting once the main
part of it is done, and if there’s nothing that needs to be covered,
or information that can be disseminated by email, don’t hesitate
to cancel the meeting. We’ve seen some cultures where meeting
attendance is equated with status, so nobody wanted to be left out.
Not to put too fine a point on it, but that is patently insane.

Some engineers swear by daily standups that are promoted
by development methodologies like Agile, and these are ac-
ceptable if they are kept short and on point. These meet-
ings usually start their lives short—15 minutes—with ev-
eryone actually standing up and giving a brief update on
what they’re working on, but without constant vigilance
they tend to quickly turn into 30-minute-long sit-down
meetings where people ramble on and on like they’re in a
group therapy session. If your team is going to have these
meetings, someone needs to run them with authority and
keep their growth in check.

If you’re trying to design something new, try to include no more
than five people in your meeting—it’s practically impossible to come

BuIlDInG An AWeSOme teAm Culture 39

up with new designs and make decisions with more than five people
in a room unless there’s only one person in the room making the
decisions. If you don’t believe us, get five of your friends together,
go downtown, and try to decide among the six of you how to do a
walking tour that hits half a dozen tourist sites. The odds are good
that you’ll stand on the street corner arguing for most of the day
unless you simply declare one person to be the final arbiter and then
follow him wherever he goes.

Useless meetings can seem like torture.

Meetings are frequently an interruption to what many refer to
as “make time,” inspired by Paul Graham’s “Maker’s Schedule,
Manager’s Schedule.”11 It can be hard for engineers to get into
the zone if they’re constantly stopping work to attend meetings.
Schedule time on your calendar in three- to four-hour blocks and
label these blocks as “busy” or even “make time,” and get your
work done. If you have to set up a meeting, try to set it up near
another natural break in the day, like lunchtime, or the very end of
the day. At Google, there’s a long (and unfortunately, often ignored)

11 http://www.paulgraham.com/makersschedule.html

http://www.paulgraham.com/makersschedule.html

40 ChApter 2

tradition of “No-meeting Thursdays”12 in the interest of clearing
time to just get work done. This is a good first step on the path to
having 20 to 30 hours of make time set aside in larger blocks.

Five simple rules for running a meeting:

1. Only invite people who absolutely need to be there.

2. Have an agenda and distribute it well before the
meeting starts.

3. End the meeting early if you’ve accomplished the
meeting’s goals.

4. Keep the meeting on track.

5. Try to schedule the meeting near other interrupt
points in your day (e.g., lunch, end of day).

If you’re going to have a meeting, create an agenda and distribute
it to all attendees at least a day before the meeting so that they’ll
know what to expect. Invite as few people as possible (remember
the cost of synchronous communication). We know numerous
engineers, engineering managers, and even directors and VPs who
will flat-out ignore invitations to a meeting that has no agenda.

Only invite people to the meeting who actually need to be there
for the meeting to accomplish its goal. Some people have taken to
banning laptops in meetings after they’ve noticed attendees reading
email instead of paying attention, but this is attacking the symptom
and not the cause—people start reading email in a meeting because
they probably don’t need to be in the meeting in the first place.

Whoever’s running the meeting should actually run the meeting and
not hesitate to (gently) cut off someone who veers off-topic or, even
worse, tries to monopolize the conversation. Doing this well can be

12 Google Engineering VP Wayne Rosing started this in 2001 in an attempt to
improve the engineers’ quality of life. Fitz has blocked off his Thursdays for
years, and it works fairly well, but requires pretty rigorous monitoring, and the
occasional grumpy email when someone schedules over it.

BuIlDInG An AWeSOme teAm Culture 41

tricky, but is worthwhile. And most importantly, don’t be afraid to
end a meeting early if you’ve completed the agenda.

Working in a “Geographically Challenged” Team

When you’re part of a distributed team or working remotely from
them, you not only need to find different ways to communicate,
but also need to put more work into communication, period. If
you’re on a team that has remote workers, this means documenting
and sharing decisions in writing, usually over email. Online chats,
instant messages, and hallway conversations might be where a
lot of discussion takes place, but there needs to be some way to
broadcast relevant discussions like these to everyone to make sure
they’re informed and participating (and as a bonus, archived email
lists provide documentation). Video chat is also incredibly useful
as a quick conversation enabler, and these days it’s pretty cheap to
outfit a whole team with webcams.

In the Subversion project we had a motto: “If the discussion didn’t
happen on the email list, then it never really happened.” People
spent lots of time bantering around ideas in chat rooms, but in order
to make the resolutions “real” we had to be mindful of everyone
else who didn’t witness them. By forcing conversations to re-post to
email lists, we gave the entire distributed team a chance to see how
decisions were arrived at (and to speak up if they wanted to). This is
particularly critical if you’re trying to encourage a consensus-based
team culture.

Talking to someone from a remote location should be as
frictionless as walking over to his desk. If you’re working remotely,
overcommunicate with your team using every available medium
(e.g., online chat, instant messages, email, video chat, phone
calls, etc.) to make sure everyone knows not only that you exist,
but also what you’re working on. And most important of all, do
not underestimate the bandwidth of a face-to-face conversation.
No matter how much you email, chat, or call, don’t be afraid to
regularly get on a plane and visit the rest of your team. This goes for
remote employees, remote teams, and remote offices as well—make
the time to get out to the home office and talk to people.

42 ChApter 2

Design Docs

It’s sometimes difficult to resist the urge to take a running leap into
writing code for a new project, but this is rarely fruitful (unless
you’re throwing together a quick and dirty prototype). Just the
same, many engineers rush right into coding before designing the
software they intend to write, and this usually ends very badly.

A design doc is typically owned by one person, authored by two
or three, and reviewed by a larger set. It serves not only as a high-
level blueprint of your future project, but also as a low-cost way to
communicate to your larger team what you want to do and how
you intend to do it. Since you haven’t spent weeks (or months)
writing code, it’s a lot easier to accept criticism at this point and
you’ll wind up with a better product and a better implementation.
In addition, once you’ve nailed down the design doc, it will serve
as your guide for both scheduling and dividing the work on your
project. Once you start coding, however, you should treat your
design doc as a living document and not one carved in stone: you
and your team should update the document as your project grows
and changes, not once you’ve shipped, although this is easier said
than done. Most teams have no docs at all, while the rest have a
short period of awesome docs, followed by a long period of out-of-
date docs.

Having said that, make sure you don’t take the “design doc religion”
to the opposite extreme. We’ve seen control freaks write a four-
page design essay for a program that’s only 100 lines of code. If
the project can be rewritten from scratch several times in the same
amount of time it takes to write a design doc, a design doc is clearly
a waste of time. Use experience and judgment when making these
time calculations and trade-offs.

Day-to-Day Discussions
Assuming high-level goals are agreed upon, you need to worry about
the tools your team uses for everyday coordination. These tools are
useful, but they tend to have narrow communication bandwidth and,
usually, a complete lack of metadata and secondary communication
channels such as facial expressions and body language. As a result,
they’re more conducive to miscommunication and an inherent

BuIlDInG An AWeSOme teAm Culture 43

threat to HRT. Still, these tools are invaluable to most teams and
(with a little effort) can give a good boost to productivity.

Mailing Lists

We don’t know of anyone who writes software without at least one
mailing list, but there are a few things you can do with your mailing
lists to make them more useful.

Many big successful projects have multiple mailing lists, separating
development discussions, code reviews, user discussions, announcements,
pager emails, and miscellaneous administrivia. Sometimes smaller
projects attempt to emulate this as they’re just getting started and
create half a dozen mailing lists when they’ve only got three engineers
and two users. This is the mailing list equivalent of providing six
conference rooms for five people to carry on a discussion—you
wind up with little coherence, a lot of echoes, and mostly empty
rooms. It’s really best to start with one list, and to add lists only
when the amount of traffic on one list gets unmanageable (which is
typically indicated by list members begging for mercy). Take some
time to establish proper etiquette around email discussions—keep
discussions civil, and prevent filibustering by a “noisy minority.”13

A mailing list isn’t going to be your first choice for a discussion in
a team that shares an office, but it’s a good idea to send a copy of
meeting agendas, meeting notes, decisions made, design docs, and
any other relevant textual information to your team’s mailing list
so that you have a convenient central record. Set up these lists to
archive all posts in a searchable index, either publicly available in
the case of open source projects or on your company’s intranet if
you’re working on a closed source project. Now you have a system
of record for the history of your project, and it’s easy to refer back
to it when a newcomer asks about the reasoning behind one or
more decisions that you made in the past. If you don’t have these

13 A “noisy minority” is usually characterized by one or two people who repeatedly
respond to every single post in a thread, refuting every argument that doesn’t
align with theirs. A cursory examination of the thread in question might lead you
to believe you’ve got a tremendous amount of dissent when, in fact, it’s coming
from just one or two disgruntled people. You need to address this behavior
quickly and carefully (see Chapter 4 for more information on dealing with these
sorts of people).

44 ChApter 2

discussions archived somewhere, you’ll find yourself repeating them
again and again and again and again.

Online Chat

Online chat is an incredibly convenient way for teams to
communicate, especially since it provides a way to send a quick
request to a teammate without interrupting her work (providing,
of course, she has her chat program configured to not interrupt her
work!). It’s a good tool for teams to use if they’re doing some light
work in the evening or on the weekend, or if one team member
is out of the office for a day or two. One-on-one chat is useful
and certainly has its place in team communication, but we strongly
recommend that teams use some sort of group chat mechanism.14

Years before instant messaging became wildly popular, teams would
hang out in an Internet Relay Chat (IRC) channel and most of their
discussions would be in a group chat. This could be noisy at times,
and it was easy enough for team members to break off to have a
private chat if they were discussing something that was not of interest
to the larger team, but in most cases discussions happened “in front
of” the rest of the team. This allowed other people to join in on the
conversation, lurk in the background and follow the discussion, or
even catch up on discussions they missed earlier. This is convenient
not only because of the ease with which ad hoc group discussions
can start, but also because it helps to build community even in teams
that are geographically dispersed. It’s often surprising how much a
newer team member can learn just by watching (or later reading)
various discussions he’s not necessarily participating in.

With the advent of instant messaging, many of these conversations
that would previously take place in the group chat room moved
to private chat, which was the default for instant messenger. It’s
very tempting to indulge your insecurity and take what might
be perceived as a stupid question to a one-on-one discussion
rather than risk embarrassment in front of the rest of the team.
Unfortunately, this increases the burden on the team because there’s
no shared lore created and different team members may ask other
team members the same question over and over again. Regardless

14 Of course, when an engineer needs uninterrupted time and can’t afford the costs
of context switching, it’s totally acceptable to ignore chat.

BuIlDInG An AWeSOme teAm Culture 45

of the application you use for chat, we strongly recommend that
your team have a convenient and accessible mechanism for group
chat. VPN and security limitations may make this difficult, but it’s
worth the trouble in order to have this additional communication
bandwidth in your team.

When many people first hear about IRC these days, they
scoff at its primitive text-based environment because even
the most modern of IRC clients tend to be less whizzy than
outdated versions of iChat or Google Talk. Don’t be fooled
by the outdated look and feel of IRC—its killer features are
that it was designed for multiperson chat and it’s asynchro-
nous, so most clients keep an unlimited scroll-back record
so that you can read back to see conversations among oth-
ers that you missed. It may be tempting to try out fancy
videoconferencing packages, shared whiteboard systems,
and more, but these systems only tend to annoy engineers
and eliminate the asynchronous advantage of IRC. You
don’t have to use IRC per se, but if you’re going to use
something else, find something that is actually designed for
group chat and isn’t just an instant messaging system with
group chat bolted on.

Sometimes people are more comfortable chatting online: we
remember the first time we went to a hackathon where a number
of open source contributors were going to meet (many for the first
time) face to face and work on their projects together. We walked
into an almost silent room to find a dozen tables—with six to eight
people per table—furiously typing away at their laptops. We figured
that, well, we were late, and everyone was already busy writing
code, so we sat down, opened our laptops, fired up our editors, and
signed on to the project’s IRC channel to see if folks who couldn’t
make it to the hackathon were “virtually” there, and we found a
number of conversations taking place in the IRC channel. We said
hello and mentioned that we’d just arrived at the hackathon room,
and imagine our surprise when several people said hello in the IRC
channel when they turned out to be sitting fewer than 10 feet away
from us! Some of this was purely inertia as we were all used to

46 ChApter 2

chatting online, but in many cases it was just the most comfortable
way for some people to communicate with the rest of the group.
Fresh off a four-hour flight and desperate for some communication
bandwidth, we got up and went from table to table to talk with
people face to face.

Using an Issue Tracker
If you’re going to use an issue/bug tracker (and you should),
it’s important that you have some sort of process in place for
processing and triaging bugs to encourage people to file and fix
important bugs in a timely manner. If your bug tracker is neglected
and not prioritized, people will stop filing bugs and begin shouting
complaints into the void; and when your team eventually digs into
the bug tracker, more than likely they will be fixing unimportant
bugs and ignoring important ones.

Keep in mind that a bug tracker is really just a slightly specialized
“Internet forum” or “bulletin board.” As such, it shares most
properties in common with email lists and the same best practices
apply. Hallway conversations about bugs should be recorded as
updates in the bug tracker, making thoughts and decisions “official”
for all to see. Keep the tone civil and don’t tolerate trollish behaviors.
If conversations get overly long or fragmented, take the discussion
temporarily to the main email list—an email client is a much better
tool for complex threads.

Communication as Part of Engineering
Hundreds and hundreds of books have been written about the
software development process. While we’re not going to dig into
them all here, there are a few communication-related highlights
that deserve mention, regardless of the development methodology
you use.

Code Comments

Code commenting style is very subjective. Verbose comments
can often provide clues regarding the intent and reasoning of the
original programmer and can be very useful, but at the cost of
ongoing maintenance: out-of-date or incorrect comments drastically
hinder understanding of a code base. Similarly, terse or nonexistent

BuIlDInG An AWeSOme teAm Culture 47

comments can cause future maintainers or API consumers to waste
time sleuthing. Comments are often used to point out missing
structure and bad naming, and then go on to re-explain what the
code already says. Comments should be focused on why the code is
doing what it’s doing, not what the code is doing.

Comments are most useful at the function or method level,
especially as a means of documenting an API, and without going
into exhaustive details, comments can be summed up with the
popular Greek maxim, “μηδέν άγαν,” or “nothing in excess.”
Beyond that, take the time to come up with a commenting style for
your team and have everyone stick to it—we think being consistent
is more important than the actual choice.15 Your style guide should
also explain the reason the guide exists and what it intends to
prescribe—for example, here’s the introduction to the Google C++
Style Guide:16

C++ is the main development language used by many of
Google’s open-source projects. As every C++ programmer
knows, the language has many powerful features, but this
power brings with it complexity, which in turn can make
code more bug-prone and harder to read and maintain.

The goal of this guide is to manage this complexity by
describing in detail the dos and don’ts of writing C++ code.
These rules exist to keep the code base manageable while still
allowing coders to use C++ language features productively.

Style, also known as readability, is what we call the
conventions that govern our C++ code. The term Style is a
bit of a misnomer, since these conventions cover far more
than just source file formatting.

One way in which we keep the code base manageable is
by enforcing consistency. It is very important that any
programmer be able to look at another’s code and quickly
understand it. Maintaining a uniform style and following
conventions means that we can more easily use “pattern-

15 See the excellent section on comments in The Art of Readable Code by Dustin
Boswell and Trevor Foucher (O’Reilly).

16 Find this and several other style guides at http://code.google.com/p/google-style-
guide/.

http://shop.oreilly.com/product/9780596802301.do
http://code.google.com/p/google-styleguide/
http://code.google.com/p/google-styleguide/

48 ChApter 2

matching” to infer what various symbols are and what
invariants are true about them. Creating common, required
idioms and patterns makes code much easier to understand.
In some cases there might be good arguments for changing
certain style rules, but we nonetheless keep things as they are
in order to preserve consistency.

Another issue this guide addresses is that of C++ feature
bloat. C++ is a huge language with many advanced features.
In some cases we constrain, or even ban, use of certain
features. We do this to keep code simple and to avoid the
various common errors and problems that these features can
cause. This guide lists these features and explains why their
use is restricted.

Open-source projects developed by Google conform to the
requirements in this guide.

Note that this guide is not a C++ tutorial: we assume that the
reader is familiar with the language.

Putting Your Name in Source Code Files
(a .k .a ., the “Author Tags” Issue)

Everyone wants to get credit for work they do, from the artist
who signs her painting to the author who puts her name on the
spine of her book or the top of her blog. It’s human nature to crave
recognition in one way or another, but littering source files with
your name is, in our opinion, more trouble than it’s worth. We’ve
all seen these attributions at the top of source files, nestled snugly
against the copyright declarations:

————————————---—————————————————

Created: October 1998 by Brian W. Fitzpatrick <fitz@red-bean.com>

————————---—————————————————————

The tradition of putting your name at the top of your source code
is an old one (heck, both of us have done it in the past), and may
have been appropriate in an age where programs were written by
individuals and not teams. Today, however, many people may touch
a particular piece of code, and the issue of name attribution in a file
is the cause of much discussion, wasted time, and hurt feelings. As a
result, we advocate strongly against names as a sign of ownership in
source code files (at best, include a name to designate a first choice

BuIlDInG An AWeSOme teAm Culture 49

to review any changes you might make to the file, but be careful
that you don’t imply ownership).

Let’s imagine, for example, that you create a new file in your team’s
project—you write a few hundred lines of code, smack your name
and the appropriate copyright header at the top of the file and send
it off for code review, and later, commit it to the repository. No
problems, no drama, no disagreements so far. Let’s say that your
teammate Adrian comes along and makes some changes to the file:
at what point does he get to put his name at the top of the file? Does
he have to fix a bug? Five bugs? Does he have to write a function?
Two functions? How many lines of code does he have to write?
What if he writes a function, slaps his name on the file, and then
someone else comes along and rewrites “his” function? Does this
person now get to put her name on the file? Does she get to take
Adrian’s name off? Unlike other collaborative pieces of creative
work—plays, novels, films—software keeps changing even after it’s
“done.” So, while listing contributor credits at the end of a movie is
a safe and static thing, attempting to add and remove names from a
source file is a never-ending exercise in insanity.

It’s easy to go overboard marking one’s “territory.”

Certainly you can answer all these questions and extensively
document every possible edge case, but maintaining this, tracking
it, and keeping an eye out for violations is an incredible waste of
time—time that could be spent actually writing code. It’s for this
very reason that we advocate tracking credit at the project level,

not in the code itself. If you need more detail, your version control
system can tell you. All those moments will be lost in time, like tears
in rain.17

Require Code Reviews for Every Commit

If you’re going to have coding standards, you need to have a means
of monitoring code going into your product. Whether you review the
code before committing it or after committing it, you should make
sure every line of code that goes into your repository gets a second
pair of eyes on it to check for style, quality, and, of course, careless
mistakes. Keep code changes small and reviewable—changesets
that are thousands of lines long are unreviewable for anything but
formatting nits. This not only results in a higher-quality code base,
but also goes a long way toward instilling a strong sense of group
pride in the quality of your code.

Have Real Test and Release Processes

Whether you’re a full-on test-driven development shop or you
just have some simple regression tests for your product, the more
automated tests you have for your product, the more confident
you can be when you’re tearing through fixing bugs or adding new
features. Once your team determines the role that testing will play, it
should be part of the coding and review process. Just as importantly,
your release process should be lightweight enough that you can do
frequent releases (e.g., weekly), but thorough enough that you catch
brokenness before it hits your users.

It Really Is About the Code After All
Although these habits of culture and communication may seem to
represent a certain amount of bias as they reflect the manner in which
we prefer to work, it’s not as subjective as you might think. We’ve
found that building a strong, productive team culture and taking
some time to pay attention to communication in the team creates a
team that will spend more time writing and shipping code and less
time arguing about what code to write.

17 Roy, Blade Runner, 1982.

Strong teams don’t arise spontaneously; they’re carefully seeded and
cultivated by team leads and founders who understand the high cost
of trying to write software with a dysfunctional team. Putting this
work in from the outset helps to create a self-selecting culture that
builds a team that will spend much more time designing and writing
code than defining and defending their culture. A big side benefit
of this effort—communication and process—is that it drastically
reduces the barrier to entry for newcomers to your team. Without
these elements in place, newcomers will either waste a lot of time
struggling to learn how your team works or give up and try to make
your team work like their last team did (for good or for bad).

While getting the right people on your team and the right values
instilled in your team is important, the overwhelming majority
of effort that goes into a culture turns out to be communication.
Mission statements, meetings, mailing lists, online chat, code
comments, documentation, and even decision-making processes all
make up the many different ways your team communicates, both
with itself and with others. It’s often a surprise to people that it takes
so much communication—including emotional time and effort—to
build a strong team for the sole purpose of writing code, but it’s true.
Code is ultimately about communications with people, not just with
a machine.

No matter what your team’s culture is, and regardless of how well
your team communicates, every effective team that we’ve ever seen
has a leader. In the next chapter, we’ll look into what makes the most
effective team leader, why her role is probably not what you think,
and why it’s important for every engineer to understand the basics of
leading a team.

 53

C H A P T E R 3

Every Boat Needs a Captain

Even if you’ve sworn on your mother’s grave that you’ll never
become a “manager,” at some point in your career you’re going to
accidentally trip and fall into a leadership position. This chapter
will help you understand what to do when this happens.

There are dozens of books already written for managers on the
topic of management, but this chapter is for engineers who find
themselves in an unofficial position of leadership. Most engineers
fear becoming managers for various reasons, yet no team can
function without a leader. We’re not here to attempt to convince
you to become a manager (even though we’re both engineering
managers now!), but rather to help show why teams need leaders,
why engineers typically fear becoming managers, and why the best
leaders work to serve their team using the principles of humility,
respect, and trust. Beyond that, we’ll delve into leadership patterns
and antipatterns, and motivation.

Understanding the ins and outs of engineering leadership is a vital
skill for influencing the direction of the software you’re writing.
If you want to steer the boat for your product and not just go
along for the ride, you need to know how to navigate or you’ll run
yourself (and your project) onto a sandbar.

54 ChApter 3

Nature Abhors a Vacuum
A boat without a captain is nothing more than a floating waiting
room—unless someone grabs the rudder and starts the engine, it’s
just going to drift along aimlessly with the current. A software
project is just like that boat: if no one pilots it, you’re left with a
group of geeks just sitting around waiting for something to happen.

Just like every ship needs a captain, every team needs a leader.

Whether officially appointed or not, someone needs to get into the
driver’s seat if your project is ever going to go anywhere, and if
you’re the motivated, impatient type, that person might be you. You
may find yourself sucked into helping your team resolve conflicts,
make decisions, and coordinate people. It happens all the time, and
often by accident. You never intended to become a “leader,” but
somehow it happened anyway. Some people refer to this affliction
as “manageritis.”

every BOAt neeDS A CAptAIn 55

@Deprecated Manager
The present-day concept of the pointy-haired manager is partially
a carryover first from military hierarchy and later adopted by the
industrial revolution1—more than 100 years ago! Factories started
popping up everywhere, and they required (usually unskilled)
workers to keep the assembly lines moving. Consequently, these
workers required supervisors to manage them, and since it was easy
to replace these workers with other people who were desperate for
a job, the managers had little motivation to treat their employees
well or improve conditions for them. Whether humane or not,
this method worked well for many years when the employees had
nothing more to do than perform rote tasks.

Managers frequently treated employees in the same way that cart
drivers would treat their mules: they motivated them by alternately
leading them forward with a carrot, and, when that didn’t work,
whipping them with a stick. This “carrot and stick” method of
management survived the transition from the factory to the modern
office, where the stereotype of the hard-ass manager-as-mule-driver
flourished in the middle part of the 20th century when employees
would work at the same job for years and years (frequently relying
on their pension as well).

This continues today in some industries—even in industries that
require creative thinking and problem solving (like engineering!)—
despite numerous studies suggesting that the anachronistic carrot
and stick is ineffective2 and harmful to engineers’ productivity.
While the assembly-line worker of years past could be trained in
days and replaced at will, an engineer can take months to get up
to speed on a new team. Unlike the mechanical efficiency of the
assembly-line worker, an engineer needs nurturing, time, and space
to think and create.

“Leader” Is the New “Manager”

Most people still use the title “manager” in the engineering world
despite the fact that it’s an anachronism. We think the term manager
should be deprecated and the term leader should be used instead.

1 In Europe, it started in the 18th century; in the United States, the 19th century.
2 http://www.ted.com/talks/dan_pink_on_motivation.html

http://www.ted.com/talks/dan_pink_on_motivation.html

56 ChApter 3

While we’re hardly members of the stalwart, politically correct
crowd, the word manager has become a four-letter word—a role
whose very existence encourages new managers to manage their
reports. Managers wind up acting like parents,3 and consequently
engineers react like children. To frame this in the context of HRT:
if the manager makes it obvious that he trusts his employee, the
employee feels positive pressure to live up to that trust. It’s that
simple. A leader forges the way for a team, looking out for their
safety and well-being, all while making sure their needs are met.
If there’s one thing you remember from this chapter, make it this:

Traditional managers worry about how to get things done,
while leaders worry about what things get done . . . (and
trust their team to figure out how to do it).

Managers worry about how things get done, while leaders forge the way.

Fitz had a new engineer join his team a few years ago. Jerry’s last
manager (at a different company) was adamant that Jerry be at his
desk from 9:00 to 5:00 every day, and assumed that if Jerry wasn’t
there, Jerry wasn’t working enough (which is, of course, a ridiculous
assumption). On his first day working with Fitz, Jerry came to Fitz
at 4:40 p.m. and stammered out an apology that he had to leave
15 minutes early because he had an appointment that he had been

3 If you have kids, the odds are good that you can remember with startling clarity
the first time you said something to your child that made you stop and exclaim
(perhaps even aloud): “Holy crap, I’ve become my mother.”

every BOAt neeDS A CAptAIn 57

unable to reschedule. Fitz looked at him, smiled, and told him flat
out, “Look, as long as you put in your 75 hours a week,4 I don’t
care what time you leave the office.” Jerry stared blankly at Fitz for
a few seconds, grinned wryly, and replied, “That’s great—I’ll have
a lot more free time than I did at my last job!” Fitz treated Jerry
like an adult, Jerry always got his work done, and Fitz never had
to worry about Jerry being at his desk, because Jerry didn’t need a
babysitter.

Being a “leader” doesn’t necessarily mean you have ultimate
responsibility for absolutely everything. There are different types of
leadership, some technical and some personal. At Google we have
two distinct roles (and titles) for people leading a team: TL (tech
lead) and TLM (tech lead manager5). A TL is typically responsible
for the technical direction for all (or part) of a product, while a
TLM is responsible for the technical direction for all (or part) of a
product in addition to the careers and happiness of the engineers
on the team. This enables engineers who want to focus on leading
a software product to avoid the people management part of being
a leader if they want to.

The Only Thing to Fear Is . . . Well, Everything

Aside from the general sense of malaise that most engineers feel
when they hear the word manager, there are a number of reasons
that most engineers don’t want to become managers. The biggest
reason you’ll hear is that you spend much less time writing code,
which is true whether you’re a technical leader or a people leader.
We’ll talk more about that later, but first: some more reasons why
most of us avoid becoming managers.

If you’ve spent the majority of your career writing code, you
typically end a day with something you can point to—whether it’s
code, a design document, or a pile of bugs you just closed—and say,
“That’s what I did today.” Based on this metric of productivity, at
the end of a busy day of “management” you’ll usually find yourself
thinking, “I didn’t do a damned thing today.” It’s the equivalent of
spending years counting the number of apples you picked each day,

4 As Foghorn Leghorn says, “That’s a joke, son.”
5 Google uses the word manager here to mean nothing more than “has people who

are reporting to him,” as opposed to “must bark commands at people.”

58 ChApter 3

and changing to a job picking bananas, only to say to yourself at
the end of each day, “I didn’t pick any apples,” handily ignoring the
giant pile of bananas sitting next to you. Quantifying management
work is more difficult than counting widgets you turned out, and
you don’t have to take credit for your team’s work; however,
making it possible for them to be happy and productive is a big
measure of your job.

Don’t ignore the fact that, as a leader, you’re creating something
different.

Another big reason for not becoming a manager is often unspoken
but rooted in the famous “Peter Principle,” which states that, “In a
hierarchy every employee tends to rise to his level of incompetence.”
Most people have had a manager who was incapable of doing
her job or was just really bad at managing people,6 and we know
some engineers who have only worked for bad managers. If you’ve
only been exposed to crappy managers for your entire career, why
would you ever want to be a manager? Why would you want to be
promoted to a role that you weren’t able to do?

There are great reasons to consider becoming a manager: first, it’s
a way to scale yourself. Even if you’re great at writing code, there’s

6 Yet another reason companies shouldn’t force people into management as part
of a career path: if an engineer is able to write reams of great code and has no
desire at all to manage people or lead a team, by forcing her into a management
or tech lead role you’re losing a great engineer and gaining a crappy manager.
This is not only a bad idea, but it’s actively harmful.

every BOAt neeDS A CAptAIn 59

still an upper limit to the amount of code you can write. Imagine
how much code a team of great engineers could write under your
leadership! Second, you might just be really good at it—many
engineers who find themselves sucked into the leadership vacuum
of a project discover that they’re exceptionally skilled at providing
the kind of guidance, help, and air cover a team needs.

The Servant Leader
There seems to be a sort of disease that strikes new managers
where they forget about all the awful things their managers did to
them and suddenly start doing these same things to “manage” the
engineers that report to them. The symptoms of this disease include,
but are by no means limited to, micromanagement, ignoring low
performers, and hiring pushovers. Without prompt treatment, this
disease can kill an entire team. The best advice we got when we
first became engineering managers at Google was from Steve Vinter,
an engineering director. He said, “Above all, resist the urge to
manage.” One of the greatest urges of the newly minted manager is
to actively “manage” her employees because that’s what a manager
does, right? This typically has disastrous consequences.

The cure for the “management” disease is a liberal application of
what we call “servant leadership,” which is a nice way of saying
the most important thing a manager can do is to serve her team,
much like a butler or majordomo tends to the health and well-being
of a household. As a servant leader, you should strive to create an
atmosphere of humility, respect, and trust (HRT). This may mean
removing bureaucratic obstacles that an engineer can’t remove by
herself, helping a team achieve consensus, or even buying dinner for
the team when they’re working late at the office. The servant leader
fills in the cracks to smooth the way for her team as well as advise
them when necessary, but still isn’t afraid of getting her hands dirty.
The only managing that a servant leader does is to manage both
the technical and social health of the team; as tempting as it may
be to focus purely on the technical health of the team, the social
health of the team is just as important (but often infinitely harder
to manage!).

60 ChApter 3

Antipatterns
Before we go over a litany of “design patterns” for successful leaders,
we’re going to review a collection of the patterns you don’t want to
follow if you want to be a successful leader. We’ve observed these
destructive patterns in a handful of bad leaders we’ve encountered
in our careers, and in more than a few cases, ourselves.7

Antipattern: Hire Pushovers

If you’re a manager and you’re feeling insecure in your role (for
whatever reason), one way to make sure no one questions your
authority or threatens your job is to hire people you can push
around. You can achieve this by hiring people who aren’t as smart
or ambitious as you are, or just people who are more insecure than
you. While this will cement your position as the team leader and
decision maker, it will mean a lot more work for you. Your team
won’t be able to make a move without you leading them like dogs
on a leash. If you build a team of pushovers, you probably can’t
take a vacation; the moment you leave the room, productivity
comes to a screeching halt. But surely this is a small price to pay for
feeling secure in your job, right?

Instead, you should strive to hire people who are smarter than
you and can replace you. This can be difficult because these very
same people will challenge you on a regular basis (in addition to
letting you know in no uncertain terms when you screw up). These
very same engineers will also consistently impress you and make
great things happen. They’ll be able to direct themselves to a much
greater extent, and some will be eager to lead the team as well. You
shouldn’t see this as an attempt to usurp your power, but rather
as an opportunity for you to lead an additional team, investigate
new opportunities, or even take a vacation without worrying about
checking in on the team every day to make sure they’re getting their
work done.

Antipattern: Ignore Low Performers

Early in Fitz’s career as a team leader at Google, the time came for
him to hand out bonus letters to his team, and he grinned as he

7 See the section on failure, in Chapter 2.

every BOAt neeDS A CAptAIn 61

told his manager, “I love being an engineering manager!” Without
missing a beat, Fitz’s manager, a long-time industry veteran, replied,
“Sometimes you get to be the tooth fairy, other times you have to
be the dentist.”

It’s never any fun to pull teeth. We’ve seen team leaders do all the
right things to build incredibly strong teams, only to have these
teams fail to excel (and eventually fall apart) because of just one or
two low performers. We understand that the human aspect is the
hardest part of writing software, but the hardest part of dealing
with humans is handling someone who isn’t meeting expectations.
Sometimes people miss expectations because they’re not working
long enough or hard enough, but the most difficult cases are when
someone just isn’t capable of doing his job no matter how long or
hard he works.

The team at Google that is responsible for keeping all of our services
running has a motto: “Hope is not a strategy.” And nowhere is hope
more overused as a strategy than in dealing with a low performer.
Most team leaders grit their teeth, avert their eyes, and just hope
that the low performer either magically gets better or just goes
away. Yet it is extremely rare that this person does either.

While the leader is hoping and the low performer isn’t getting
better (or leaving), high performers on the team waste valuable time
pulling the low performer along and team morale leaks away into
the ether. You can be sure that the team knows they’re there even if
you’re ignoring them—the rest of the team is acutely aware of who
the low performers are, because they have to carry them.

Ignoring low performers is also a way to keep new high performers
from joining your team, and a way to encourage existing high
performers to leave. You eventually wind up with a whole team
of low performers because they’re the only ones who can’t leave
of their own volition. Lastly, you aren’t even doing the low
performer any favors by keeping him on the team; often, someone
who wouldn’t do well on your team would actually have plenty of
impact somewhere else.

The benefit of dealing with a low performer as quickly as possible is
that you can put yourself in the position of helping him up or out.
If you deal with a low performer right away, you’ll oftentimes find
that he merely needs some encouragement or direction to slip into a

62 ChApter 3

higher state of productivity. If you wait too long to deal with a low
performer, his relationship with the team is going to be so sour and
you’re going to be so frustrated that you’re not going to be able to
help him.

How does one coach a low performer effectively? It turns out that
the two of us have (unfortunately) had quite a lot of experience in
this area, learned through painful trial and error. The best analogy
is to imagine you’re helping a limping person learn to walk again,
then jog, then run alongside the rest of the team. It almost always
requires temporary micromanagement—but still a whole lot of
HRT, particularly respect. Set up a specific time frame (say, two
or three months), and some very specific goals you expect him to
achieve in that period. Make the goals small and incremental, so
there’s an opportunity for lots of small successes. Meet with the
engineer every week to check on progress, and be sure you set really
explicit expectations around each upcoming milestone, so it’s easy
to measure success or failure. If the low performer can’t keep up,
it will become quite obvious to both of you early in the process.
At this point, the person will often acknowledge that things aren’t
going well and decide to quit; in other cases, determination will
kick in and he’ll “up his game” to meet expectations. Either way,
by working directly with the low performer you’re catalyzing
important and necessary changes.

Antipattern: Ignore Human Issues

As we’ve said before, a team leader has two major areas of focus
for his team: the social and the technical. It’s rather common for
leaders to be stronger in the technical side, and since most leaders
are promoted from a technical job (where the primary goal of their
job was to solve technical problems), they tend to ignore human
issues. It’s tempting to focus all your energy on the technical side of
your team because, as an individual contributor, the vast majority
of your time is spent solving technical problems. When you were a
student, your classes were all about learning the technical ins and
outs of engineering. Now that you’re a leader, however, you ignore
the human element of your team at your own peril.

Let’s start with an example of a leader ignoring the human element
in his team. Years ago, a close friend of Fitz’s had his first child—
we’ll call him Jake. Jake and Fitz had worked together for years,

every BOAt neeDS A CAptAIn 63

both remotely and in the same office, so in the weeks following the
arrival of the new baby, Jake worked from home. This worked out
great for Jake and his wife, and Fitz was totally fine with it as he
was already used to working remotely with Jake. They were their
usual productive selves until their manager, Pablo (who worked in
a different office), found out that Jake was working from home
for most of the week. Pablo was upset that Jake wasn’t going into
the office to work with Fitz, despite the fact that Jake was just as
productive as always and that Fitz was fine with the situation. Jake
attempted to explain to Pablo that he was just as productive as he
would be if he came into the office, and that it was much easier on
both him and his wife for him to mostly work from home for a few
weeks. Pablo’s response: “Dude, people have kids all the time. You
need to go into the office.” Needless to say, Jake (normally a mild-
mannered engineer) was enraged and lost a lot of respect for Pablo.

There are numerous ways that Pablo could have handled this
differently: he could have showed some understanding that Jake
wanted to be home more for his wife and, if his productivity and
team weren’t being affected, just let him continue to do so for a
while. He could have negotiated that Jake go into the office for one
or two days a week until things settled down. Regardless of the end
result, a little bit of empathy would have gone a long way toward
keeping Jake happy in this situation.

Antipattern: Be Everyone’s Friend

The first foray that most engineers have into leadership is when
they become the lead of a team of which they were formerly
members. Many leads don’t want to lose the friendships they’ve
cultivated with their teams, so they will sometimes work extra hard
to maintain friendships with their team members after becoming a
team lead. This can be a recipe for disaster and for a lot of broken
friendships. Don’t confuse friendship with leading with a soft touch:
when you hold power over someone’s career, he may feel pressure
to artificially reciprocate gestures of friendship.

Remember that you can lead a team and build consensus without
being a peer of your team (or a monumental hard-ass). Likewise,
you can be a tough leader without tossing your existing friendships
to the wind. We’ve found that having lunch with your team can be
an effective way to stay socially connected to them without making

64 ChApter 3

them uncomfortable—this gives you a chance to have informal
conversations outside the normal work environment.

Sometimes it can be tricky to move into a management role over
someone who has been a good friend and a peer. If the friend who
is being managed is not self-managing and is not a hard worker, it
can be stressful for everyone. We recommend that you avoid getting
into this situation whenever possible.

Antipattern: Compromise the Hiring Bar

Steve Jobs once said: “A people hire other A people; B people hire
C people.” It’s incredibly easy to fall victim to this adage, and even
more so when trying to hire quickly. A common approach we’ve
seen is that a team needs to hire five engineers, so they sift through
their pile of applications, interview 40 or 50 people, and pick the
best five regardless of whether they meet the hiring bar. This is one
of the fastest ways to build a mediocre team.

The cost of finding the right person—whether by paying recruiters,
paying advertising, or pounding the pavement for references—
pales in comparison to the cost of dealing with an employee you
never should have hired in the first place. This “cost” manifests
itself in lost team productivity, team stress, time spent managing the
employee up or out, and the paperwork and stress involved in firing
the employee. That’s assuming, of course, that you try to avoid
the monumental cost of just leaving him on the team. If you’re
managing a team where you don’t have a say over hiring and you’re
unhappy with the hires being made for your team, you need to fight
tooth and nail for higher-quality engineers. If you still keep getting
handed substandard engineers, maybe it’s time to look for another
job. Without the raw materials for a great team, you’re doomed.

Antipattern: Treat Your Team Like Children

The best way to show your team you don’t trust them is to treat
them like kids—people tend to act the way you treat them, so
if you treat them like children or prisoners, don’t be surprised
when that’s how they behave. You can manifest this behavior by

every BOAt neeDS A CAptAIn 65

micromanaging them or simply by being disrespectful of their
abilities and giving them no opportunity to be responsible for their
work. If it’s permanently necessary to micromanage people because
you don’t trust them, you’ve got a hiring failure on your hands.
Well, it’s a failure unless your goal was to build a team that you can
spend the rest of your life babysitting. If you hire people worthy
of trust and show these people you trust them, they’ll usually rise
to the occasion (sticking with the basic premise, as we mentioned
earlier, that you’ve hired good people).

Fitz runs a conference in Chicago at a site rented from a local
institution. The first time Fitz went to get access to the venue for
the conference, the facilities manager gave Fitz a brief tour of the
place to make sure he knew where everything was. The manager
then handed him the key to the building and told Fitz that he’d
get the key back from him next week. There was no list of “dos”
and “dont’s,” and no extensive supervision for the event, and as a
result Fitz and his team felt responsible for taking take care of the
facility as though it were their own, going above and beyond the
expectations of keeping the place clean and organized.

The results of this level of trust go all the way from keys to a
building to office and computer supplies. As another example,
Google provides us with cabinets stocked with various and
sundry office supplies (e.g., pens, notebooks, and other “legacy”
implements of creation) that we’re free to take as we need them.
Our IT department runs numerous “Tech Stops” that provide self-
service areas that are like a mini-electronics store. These contain
lots of computer accessories and doodads (e.g., power supplies,
cables, mice, USB drives, etc.) that it would be easy to just grab
and walk off with, but since we’re being entrusted to check these
items out we feel a responsibility to Do The Right Thing. Many
people from typical corporations react in horror to hearing this,
exclaiming that surely we’re hemorrhaging money due to people
“stealing” these items. That’s certainly possible, but what about the
costs of having a workforce that behaves like children? Surely that’s
more expensive than the price of a few pens and USB drives.

66 ChApter 3

Leadership Patterns
These are a collection of behavior patterns for successful leadership
that we’ve learned from experience, from watching other successful
leaders, and, most of all, from our own leadership mentors.
These patterns are not only those that we’ve had great success
implementing, but the patterns that we’ve always respected the
most in the leaders that we follow.

Lose the Ego

We talked about “losing the ego” in Chapter 1 when we first
examined HRT, but it’s especially important when playing the
role of servant leader. This pattern is frequently misunderstood as
encouraging leaders to be a doormat and let their team walk all
over them, but that’s not the case at all. We admit that there’s a
fine line between being humble and letting others take advantage
of you, but humility is not the same as lacking confidence. You can
still have self-confidence and opinions without being an egomaniac.
Big personal egos are hard to handle on any team, especially in
the team’s leader. Instead, you should work to cultivate a strong
collective team ego and identity.

Part of “losing the ego” is something we’ve covered already: you
need to trust your team. That means respecting the abilities and
prior accomplishments of the team members, even if they’re new
to your team.

If you’re not micromanaging your team, you can be pretty certain
the folks working in the trenches know the details of their work
better than you do. This means that while you may be the one
driving the team to consensus and helping to set the direction, the
nuts and bolts of how to accomplish your goals are best decided by
the people who are putting the product together. This gives them
not only a greater sense of ownership, but also a greater sense of
accountability and responsibility for the success (or failure!) of their
product. If you’ve got a good team and you let them set the bar for
the quality and rate of their work, they’ll accomplish more than
they would by you standing over them with a carrot and a stick.

every BOAt neeDS A CAptAIn 67

Many engineers new to a leadership role feel an enormous
responsibility to get everything right, to know everything, and
to have all the answers. We can assure you that you will not get
everything right, nor will you have all the answers, and if you act
like you do, you’ll quickly lose the respect of your team. A lot of
this comes down to having a basic sense of security in your role.
Think back to when you were a full-time engineer; you could
smell insecurity a mile away. Try to appreciate inquiry: when
someone questions a decision or statement you made, remember
that this person is usually just trying to better understand you. If
you encourage inquiry, you’re much more likely to get the kind
of constructive criticism that will make you a better leader of a
better team. Finding people who will give you good constructive
criticism is incredibly difficult, and it’s even harder to get this kind
of criticism from people who “work for you.” Think about the big
picture of what you’re trying to accomplish as a team, and accept
feedback and criticism openly; avoid the urge to be territorial.

The last part of losing the ego is a simple one, but many engineers
would rather be boiled in oil than do it: apologize when you make
a mistake. And we don’t mean you should just sprinkle “I’m sorry”
throughout your conversation like salt on popcorn—you have to
sincerely mean it. You are absolutely going to make mistakes, and
whether you admit it or not your team is going to know you’ve
made a mistake. They’ll know regardless of whether they talk to
you or not (and one thing is guaranteed: they will talk about it
with one another). Apologizing doesn’t cost money. People have
enormous respect for leaders who apologize when they screw up,
and contrary to popular belief it doesn’t make you vulnerable. In
fact, you’ll usually gain respect from people when you apologize,
because apologizing tells people you are level-headed, good at
assessing situations, and—coming back to HRT—humble.

68 ChApter 3

Be a Zen Master

As an engineer, you likely developed an excellent sense of skepticism
and cynicism, but this can be a liability when you’re trying to lead
a team. That’s not to say you should be naïvely optimistic at every
turn, but you would do well to be less vocally skeptical while still
letting your team know you’re aware of the intricacies and obstacles
involved in your work. Mediating your reactions and maintaining
your calm is more important as you lead more people, because your
team will (both unconsciously and consciously) look to you for
clues on how to act and react to whatever is going on around you.

Ommmmm

A simple way to visualize this effect is to see your company’s org
chart as a chain of gears, with the engineer writing code as a tiny
gear with just a few teeth all the way at one end, and each successive
manager above him as another gear, ending with the CEO as the
largest gear with many hundreds of teeth. This means every time
an engineer’s “manager gear” (with maybe a few dozen teeth)
makes a single revolution, the “engineer gear” makes two or three
revolutions. And the CEO can make a small movement and send
the engineer, at the end of a chain of six or seven gears, spinning
wildly! The farther you move up the chain, the faster you can set
the gears below you spinning, whether you intend to or not.

every BOAt neeDS A CAptAIn 69

Understand the gear ratios across your organization.

Fitz had a manager, Bill,8 who truly mastered the ability to maintain
calm at all times. No matter what blew up, no matter what crazy
thing happened, no matter how big the firestorm, Bill would never
panic. Most of the time he’d place one arm across his chest, rest his
chin in his hand, and ask questions about the problem, usually to
a completely panicked engineer. This had the effect of calming the
engineer and helping her to focus on solving the problem instead of
running around in a chicken-with-its-head-cut-off mode. Fitz used
to joke that if someone came in and told Bill 19 data centers had
been attacked by space aliens, Bill’s response would be, “Any idea
why they didn’t make it an even 20?”

This brings us to another Zen management trick: asking questions.
When a team member asks you for advice, it’s usually pretty exciting
because you’re finally getting the chance to fix something! That’s
exactly what you did for years before moving into a leadership
position, so you usually go leaping into solution mode, but that
is the last place you should be. The engineer asking for advice
typically doesn’t want you to solve his problem, but rather to help
him solve it, and the easiest way to do this is to ask him questions.
This isn’t to say you should replace yourself with a Magic 8 Ball,
which would be maddening and unhelpful. Instead, you can apply
some HRT and try to help him solve the problem on his own by
trying to refine and explore his problem. This will usually lead the

8 His real name.

70 ChApter 3

engineer to the answer,9 and it will be his answer, which leads back
to the ownership and responsibility we went over earlier in this
chapter. Whether you have the answer or not, using this technique
will almost always leave the engineer with the impression that you
did. Tricky, eh? Socrates would be proud of you.

Be a Catalyst

In chemistry a catalyst is something that accelerates a chemical
reaction, but which itself is not consumed in the reaction. One of the
ways in which catalysts work (e.g., enzymes) is to bring reactants
into close proximity: instead of bouncing around randomly in a
solution, the reactants are much more likely to favorably interact
with one another when the catalyst helps bring them together. This
is a role you’ll often need to play as a leader, and there are a number
of ways you can go about it.

One of the most common things a team leader does is to build
consensus. This may mean you drive the process from start to
finish, or you just give it a gentle push in the right direction to
speed it up. Working to build team consensus is a leadership skill
that is often used by unofficial leaders because it’s one way you
can lead without any actual authority. If you have the authority,
you can direct and dictate direction, but that’s less effective overall
than building consensus. If your team is looking to move quickly,
sometimes they’ll voluntarily concede authority and direction to
one or more team leads. While this might look like a dictatorship
or oligarchy, when it’s done voluntarily it’s a form of consensus.

Sometimes your team already has consensus about what you need to
do, but they hit a roadblock and get stuck. This could be a technical
or organizational roadblock, but jumping in to help the team get
moving again is a common leadership technique. There are some
roadblocks that, while virtually impossible for your team members
to get past, will be easy for you to handle, and helping your team
to understand that you’re glad (and able) to help out with these
roadblocks is valuable.

9 See also “Rubber duck debugging,” http://en.wikipedia.org/wiki/Rubber_duck_
debugging.

http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging

every BOAt neeDS A CAptAIn 71

One time Fitz’s team spent several weeks trying to work past an
obstacle with his company’s legal department. When they finally
reached their wits’ end and came to Fitz with the problem, he had
it solved in less than two hours because he knew the right person
to contact. Another time Ben’s team needed some server resources
and just couldn’t get them allocated. Fortunately, Ben was in
communication with other teams across the company and managed
to get the team exactly what they needed that very afternoon. Yet
another time one of the engineers on Fitz’s team was having trouble
with an arcane bit of Java code, and while Fitz wasn’t a Java expert,
he was able to connect the engineer to another engineer who knew
exactly what the problem was. You don’t have to know all the
answers to help remove roadblocks, but it usually helps to know
the people who do. In many cases, knowing the right people is more
valuable than knowing the right answer.

Another way to catalyze your team is to make them feel safe and
secure so that they can take greater risks. Risk is a fascinating
thing—most humans are terrible at evaluating risk, and most
companies try to avoid risk at all costs. As a result of this, the usual
modus operandi is to work conservatively and focus on smaller
successes even when taking a bigger risk might mean exponentially
greater success. One thing we often say at Google is that if you
try to achieve an impossible goal, there’s a good chance you’ll fail,
but if you fail trying to achieve the impossible, you’ll most likely
accomplish way more than you would have accomplished had you
merely attempted something you knew you could complete. A good
way to build a culture where risk taking is accepted is to let your
team know it’s OK to fail.

So let’s get that out of the way: it’s OK to fail. In fact, we like to
think of failure as a way of learning a lot really quickly, providing
that you’re not repeatedly failing at the same thing. In addition, it’s
important to see failure as an opportunity to learn and not to point
fingers or assign blame. Failing fast is good, because there’s not a lot
at stake.10 Failing slowly can also teach a valuable lesson, but it is
more painful because more is at risk and more can be lost (usually
engineering time). Failing in a manner that affects users is probably

10 See Alberto Savoia’s talk, “The Pretotyping Manifesto,” at http://www.youtube.
com/watch?v=t4AqxNekecY.

http://www.youtube.com/watch?v=t4AqxNekecY
http://www.youtube.com/watch?v=t4AqxNekecY

72 ChApter 3

the least desirable failure that we encounter, and one where we have
the greatest amount of structure in place to learn from failures.
As mentioned earlier, every time we have a production failure at
Google we go through what we call a postmortem. This procedure
is a way to document the events that led to the actual failure and to
develop a series of steps that will prevent it from happening in the
future. This is not an opportunity to point fingers, nor is it intended
to introduce unnecessary bureaucratic checks, but rather to focus
strongly on the core of the problem and fix it once and for all. It’s
very difficult, but quite effective (and cathartic!).

Individual successes and failures are a bit different. It’s one thing to
laud individual successes, but looking to assign individual blame in
the case of failure is a great way to divide a team and discourage
risk taking across the board. It’s OK to fail, but fail as a team and
learn from your failures. If an individual succeeds, praise him in
front of the team. If an individual fails, give constructive criticism
in private.11 Whatever the case, take advantage of the opportunity
and apply a liberal helping of HRT to help your team to learn from
their failures.

Be a Teacher and a Mentor

One of the hardest things to do as a team leader is to watch a more
junior-level engineer spend three hours working on something you
know you can knock out in 20 minutes. Teaching team members
and giving them a chance to learn on their own can be incredibly
difficult at first, but it’s a vital component of effective leadership.
This is especially important for new hires who, in addition to
learning your team’s technology and code base, are learning your
team’s culture and the appropriate level of responsibility to assume.

Most engineers don’t apply for the role of mentor—they usually
become one when a team lead is looking for someone to mentor
a new team member. It doesn’t take a lot of formal education or
preparation to be a mentor; in fact, you primarily need three things:
experience with your team’s processes and systems, the ability
to explain things to someone else, and the ability to gauge how

11 Public criticism of an individual is rarely necessary, and most often is just mean
or cruel. You can be sure the rest of the team already knows when an individual
has failed, so there’s no need to rub it in.

every BOAt neeDS A CAptAIn 73

much help your mentee needs. The last thing is probably the most
important—giving your mentee enough information is what you’re
supposed to be doing, but if you overexplain things or ramble
on endlessly, your mentee will probably tune you out rather than
politely tell you he got it.

Set Clear Goals

This is one of those patterns that, as obvious as it sounds, is solidly
ignored by an enormous number of leaders. If you’re going to get
your team moving rapidly in one direction, you need to make sure
they all understand and agree on what the direction is. Imagine your
product is a big truck (and not a series of tubes). Each team member
has in his hand a rope tied to the front of the truck, and as they
work on the product, they’ll pull the truck in their own direction.
If your intention is to pull the truck (or product) northbound as
quickly as possible, you can’t have team members pulling every
which way—you want them all pulling the truck north.

Is everyone pulling in the same direction?

The easiest way to set a clear goal and get your team pulling the
product in the same direction is to create a concise mission statement
for the team (see the section “The Mission Statement—No, Really”
in Chapter 2 for more information about mission statements). Once
you’ve helped the team define their direction and goals, you can
step back and give them more autonomy, periodically checking in
to make sure they’re still on the right track. This not only frees up
your time to handle other leadership tasks, but it also drastically
increases the efficiency of your team. Teams can (and do) succeed
without clear goals, but they typically waste a great deal of energy as
each team member pulls the product in a slightly different direction.
This frustrates you, slows progress for the team, and forces you to
use more and more of your own energy to correct the course.

74 ChApter 3

Be Honest

This doesn’t mean we’re assuming you are lying to your team, but it
merits a mention because you’ll inevitably find yourself in a position
where you can’t tell your team something or, even worse, you have
to tell them something they don’t want to hear. A former manager
of Fitz’s would tell new team members, “I won’t lie to you, but I
will tell you when I can’t tell you something or if I just don’t know.”

If a team member approaches you about something you can’t share
with him, it’s OK to just tell him you know the answer but can’t
tell him. Even more common is when a team member asks you
something you don’t know the answer to: you can tell him you don’t
know. This is another one of those things that seems blindingly
obvious when you read it, but many engineers move to a manager
role and feel that if they don’t know the answer to something it
proves they’re weak or out of touch. In reality, the only thing it
proves is that they’re human.

Giving hard feedback is . . . well, hard. The first time you have to
tell one of your engineers he made a mistake or didn’t do his job
as well as was expected of him can be incredibly stressful. Most
management texts advise that you use the “compliment sandwich”
to soften the blow when delivering hard feedback. A compliment
sandwich looks something like this:

“You’re a solid member of the team and one of our smartest
engineers. That being said, your code is incredibly convoluted and
almost impossible for anyone else on the team to understand. But
you’ve got great potential and a wicked cool neck beard.”

Sure this softens the blow, but with this sort of beating around
the bush most people will walk out of this meeting only thinking,
“Sweet! I’ve got a wicked cool beard!” We strongly advise against
using the compliment sandwich, not because we think you
should be unnecessarily cruel or harsh, but because most people
won’t hear the critical message, which is that something needs to
change. It’s possible to employ HRT here: be kind and empathetic
when delivering constructive criticism without resorting to the
compliment sandwich. In fact, kindness and empathy are critical if
you want the recipient to hear the criticism and not immediately go
on the defensive.

every BOAt neeDS A CAptAIn 75

Beware the compliment sandwich.

Years ago, Fitz picked up an engineer, Tim, from another manager
who insisted that Tim was impossible to work with. He told Fitz
that Tim never responded to feedback or criticism and instead just
kept doing the same things he’d been told he shouldn’t do. Fitz
sat in on a few of the manager’s meetings with Tim to watch the
interaction between the manager and Tim, and he noticed that the
manager made extensive use of the compliment sandwich so as
not to hurt Tim’s feelings. When Fitz took Tim on his team, he
sat down with him and very clearly explained that Tim needed to
make some changes to work more effectively with the team. Fitz
didn’t give Tim any compliments or candy-coat the issue, but just as
importantly, Fitz wasn’t mean—he just laid out the facts as he saw
them based on Tim’s performance with the previous team. Lo and
behold, within a matter of weeks (and after a few more “refresher”
meetings), Tim’s performance improved dramatically. Tim just
needed very clear feedback and direction.

When providing direct feedback or criticism, your delivery is key
to making sure your message is heard and not deflected. If you
put the recipient on the defensive, he’s not going to be thinking of
how he can change, but rather how he can argue with you to show
you you’re wrong. Ben once managed an engineer we’ll call Dean.
Dean had extremely strong opinions and would argue with the rest
of the team about anything. It could be something as big as the
team’s mission or as small as the placement of a widget on a web
page; Dean would argue with the same conviction and vehemence

76 ChApter 3

either way, and he refused to let anything slide. After months of this
behavior, Ben met with Dean to explain to him that he was being
too combative. Now, if Ben had just said:

“Dean, stop being such a jerk.”

you can be pretty sure Dean would have disregarded it entirely. Ben
thought hard about how he could get Dean to understand how his
actions were adversely affecting the team, and he came up with the
following metaphor:

Every time a decision is made, it’s like a train coming
through town—when you jump in front of the train to stop it
you slow the train down and potentially annoy the engineer
driving the train. A new train comes by every 15 minutes,
and if you jump in front of every train, not only do you
spend a lot of your time stopping trains, but eventually one
of the engineers driving the train is going to get mad enough
to run right over you. So, while it’s OK to jump in front of
some trains, pick and choose the ones you want to stop to
make sure you’re only stopping the trains that really matter.

This anecdote not only injected a bit of humor into the situation,
but also made it easier for Ben and Dean to discuss the effect that
Dean’s “train stopping” was having on the team in addition to the
energy Dean was spending on it.

Track Happiness

As a leader, one way to make your team more productive (and less
likely to leave) in the long term is to take some time to gauge the
team’s happiness. The best leaders we’ve worked with have all been
amateur psychologists, looking in on their team members’ welfare
from time to time, making sure they get recognition for what they
do, and trying to make certain they are happy with their work. One
leader we know makes a spreadsheet of all the grungy, thankless
tasks that need to be done and makes certain these tasks are evenly
spread across the team. Another leader watches the hours his team is
working and uses comp time and fun team outings to avoid burnout
and exhaustion. Yet another leader starts one-on-one sessions with
his team members by dealing with their technical issues as a way to
break the ice, and then takes some time to make sure each engineer
has everything he needs to get his work done. After they’ve warmed

every BOAt neeDS A CAptAIn 77

up, he talks to the engineer for a bit about how he’s enjoying the
work he’s doing and what he’s looking forward to next.

One of the most valuable tools in tracking your team’s happiness
is, at the end of each one-on-one meeting, to ask the team member,
“What do you need?” This simple question is a great way to wrap
up and make sure each team member has what he needs to be
productive and happy, although you may need to carefully probe
a bit to get details. If you ask this every time you have a one-on-
one, you’ll find that eventually your team will remember this and
sometimes even come to you with a laundry list of things they need
to make their job better.

Shortly after Fitz started at Google he had a meeting with
then-CEO Eric Schmidt, and at the end Eric asked Fitz, “Is
there anything you need?” Fitz, who had prepared a mil-
lion things for that meeting, was completely unprepared
for this. So he sat there dumbstruck and staring. But you
can be sure Fitz had something ready the next time he was
asked that question!

It can also be worthwhile to pay some attention to your team’s
happiness outside the office. Be wary of assuming that people have
no life outside of work—having unrealistic expectations about the
amount of time people can put into their work will cause people to
lose respect for you, or worse, to burn out. We’re not advocating
that you pry into your team members’ personal lives, but being
sensitive to personal situations that your team members are going
through can give you a lot of insight into why they may be more
or less productive at any given time. Giving a little extra slack to a
team member who is having a tough time at home now can make
him a lot more willing to put in longer hours when your team has a
tight deadline to hit later.

A big part of tracking your team members’ happiness is tracking
their careers. If you ask a team member where he sees his career
in five years, most of the time you’ll get a shrug and a blank look.
When put on the spot, most engineers won’t say much about this,
but there are usually a few things that every engineer would like to

78 ChApter 3

do in the next five years: get promoted, learn something new, launch
something important, and work with smart people. Regardless of
whether they verbalize this, most engineers are thinking about it. If
you’re going to be an effective leader, you should be thinking about
how you can help make all those things happen and let your team
know you’re thinking about this. The most important part of this
is to take these implicit goals and make them explicit so that when
you’re giving career advice you have a real set of metrics on which
to evaluate situations and opportunities.

Tracking happiness comes down to not just monitoring careers,
but also giving your team members opportunities to improve
themselves, get recognized for the work they do, and have a little
fun along the way.

Other Tips and Tricks

Delegate, but get your hands dirty. When moving from an individual
contributor role to a leadership role, achieving a balance is one of
the hardest things to do: initially, you’re inclined to do all of the
work yourself, and after being in a leadership role for a long time,
it’s easy to get into the habit of doing none of the work yourself. If
you’re new to a leadership role, you probably need to work hard to
delegate work to other engineers on your team, even if it will take
them a lot longer than you to accomplish that work. Not only is
this one way for you to maintain your sanity, but also it’s how the
rest of your team will learn. If you’ve been leading teams for a while
or if you pick up a new team, one of the easiest ways to gain the
team’s respect and get up to speed on what they’re doing is to get
your hands dirty—usually by taking on a grungy task no one else
wants to do. You can have a résumé and a list of achievements a
mile long, but nothing lets a team know how skillful and dedicated
(and humble) you are like jumping in and actually doing some hard
work.

Seek to replace yourself. Unless you want to keep doing the exact
same job for the rest of your career, seek to replace yourself. This
starts, as we mentioned earlier, with the hiring process: if you want
a member of your team to replace you, you need to hire people
capable of replacing you, which we usually sum up by saying

every BOAt neeDS A CAptAIn 79

you need to “hire people smarter than you.” Once you have
the engineers capable of doing your job, you need to give them
opportunities to take on more responsibilities or occasionally lead
the team. If you do this, you’ll quickly see which engineers have the
most aptitude to lead as well as which engineers want to lead the
team—remember, some excellent engineers prefer to just be high-
performing individual contributors, and that’s OK. We’ve always
been amazed at companies that take their best engineers and—
against their wishes—throw these engineers into management roles.
This usually subtracts a great engineer from your team and adds a
subpar manager.

Know when to make waves. You will (inevitably and frequently)
have difficult situations crop up where every cell in your body is
screaming at you to do nothing about it. It may be the engineer on
your team whose technical chops aren’t up to par. It may be the
engineer who jumps in front of every train. It may be the engineer
who is working 30 hours a week. “Just wait a bit and it will get
better,” you’ll think to yourself. “It will work itself out,” you’ll
rationalize. Don’t fall into this trap—these are the situations where
you need to make the biggest waves and you need to make them now.
Rarely will these problems work themselves out, and the longer you
wait to address them, the more they’ll adversely affect the rest of
the team and the more they’ll keep you up at night thinking about
them. By waiting, you’re only delaying the inevitable and causing
untold damage in the process. So act, and act quickly.

Sometimes you need to make waves, even when you don’t want to.

80 ChApter 3

Shield your team from chaos. When you step into a leadership role,
the first thing you’ll usually discover is that outside your team is a
world of chaos and uncertainty (or even insanity) that you never
saw when you were an individual contributor. When Fitz first
became a manager back in the 1990s (before going back to being
an individual contributor) he was taken aback by the sheer volume
of uncertainty and organizational chaos that was happening in his
company. He asked another manager what had caused this sudden
rockiness in the otherwise calm company, and the other manager
laughed hysterically at Fitz’s naïveté: the chaos had always been
present, but Fitz’s previous manager had shielded Fitz and the rest
of the team from it.

Give your team air cover. While it’s important that you keep
your team informed about what’s going on “above” them in the
company, it’s just as important that you defend them from a lot of
the uncertainty and frivolous demands that may be imposed upon
you from outside your team. Share as much information as you
can with your team, but don’t distract them with organizational
craziness that is extremely unlikely to ever actually affect them.

Let your team know when they’re doing well. Many new team
leads can get so caught up in dealing with the shortcomings of their
team members that they neglect to provide positive feedback often
enough. Just as you let someone know when he screws up, be sure
to let him know when he does well, and be sure to let him (and the
rest of the team) know when he knocks one out of the park.

Lastly, here’s something the best leaders know and use often when
they have adventurous team members who want to try new things
often: it’s easy to say “yes” if it’s easy to undo something. If you
have a team member who wants to take a day or two to try using
a new tool or library that could speed up your product (and you’re
not on a tight deadline), it’s easy to say, “Sure, give it a shot.” If, on
the other hand, he wants to do something like launch a product that
you’re going to have to support for the next 10 years, you’ll likely
want to give it a bit more thought. Really good leaders have a good
sense for when something can be undone.

every BOAt neeDS A CAptAIn 81

People Are Like Plants
Fitz’s wife is the youngest of six children, and her mother was
faced with the difficult task of figuring out how to raise six very
different children, each of whom needed different things. Fitz asked
his mother-in-law how she managed this (see what we did there?),
and she responded that kids are like plants: some are like cactuses
and need little water but lots of sunshine, others are like African
violets and need diffuse light and moist soil, and still others are
like tomatoes and will truly excel if you give them a little fertilizer.
If you have six kids and give each one the same amount of water,
light, and fertilizer, they’ll all get equal treatment, but the odds are
good that none of them will get what they actually need.

Different engineers need different things to grow.

And so engineers are also like plants: some need more light, and
some need more water (and some need more bullshit, er, fertilizer).
It’s your job as their leader to figure out which engineers need what
and to then give it to them.

82 ChApter 3

Take a look at this matrix:

Where does each of your employees lie?

To get all of your team members into the sweet spot, you need
to motivate the engineers who fall into the “In a rut” portion of
the matrix, and provide stronger direction to the engineers who
are in the “Look! Squirrel!” portion. Of course, those who are
“Adrift” need both motivation and direction. So, instead of water
and sunlight, you need to provide engineers with a combination
of motivation and direction to make them happy and productive.
And you don’t want to give them too much of either—because if an
engineer doesn’t need motivation or direction and you try giving it
to him, you’re just going to annoy him.

Giving direction is fairly straightforward—it requires a basic
understanding of what needs to be done, some simple organizational
skills, and enough coordination to break it down into manageable
tasks. With those tools in hand you can provide enough guidance
for an engineer in need of directional help (OK, there’s more to it,
but we covered a lot of that earlier in the chapter). Motivation,
however, is a bit more sophisticated and merits some explanation.

every BOAt neeDS A CAptAIn 83

Intrinsic Versus Extrinsic Motivation
There are two types of motivation: extrinsic, which originates from
outside forces (such as monetary compensation), and intrinsic,
which comes from within. In his book Drive,12 Dan Pink explains
that the way to make people the happiest and most productive isn’t
to motivate them extrinsically (e.g., throw piles of cash at them),
but rather to work to increase their intrinsic motivation. Dan claims
you can increase intrinsic motivation by giving people three things:
autonomy, mastery, and purpose.13

An engineer has autonomy when she has the ability to act on her
own without someone micromanaging her.14 With autonomous
engineers, you might give them the general direction in which they
need to take the product, but leave it up to them to decide how to
get there. This helps with motivation not only because they have a
closer relationship with the product (and likely know better than
you how to build it), but also because it gives them a much greater
sense of ownership of the product. The bigger their stake is in
the success of the product, the greater their interest is in seeing it
succeed.

Mastery in its basest form simply means you need to give an
engineer the opportunity to learn new skills and improve existing
skills. Giving ample opportunities for mastery not only helps to
motivate engineers, but also makes them better engineers over time,
which makes for stronger teams.15 An engineer’s skills are like the
blade of a knife: you may spend tens of thousands of dollars to find
engineers with the sharpest skills for your team, but if you “use”
that knife for years without sharpening it, you will wind up with
a dull knife that is inefficient, and in some cases useless. Ample
opportunities for engineers to learn new things and master their
craft will keep them sharp, efficient, and effective.

12 As we mentioned earlier in this chapter, see also Dan’s fantastic TED talk on this
subject.

13 This assumes that the engineers in question are being paid well enough that
income is not a source of stress.

14 Of course, this assumes that you have engineers on your team who don’t need
micromanagement.

15 Of course, it also means they’re more valuable and marketable employees, so it’s
easier for them to pick up and leave you if they’re not enjoying their work. See
the pattern about tracking happiness earlier in this chapter.

84 ChApter 3

Of course, all the autonomy and mastery in the world isn’t going
to help motivate someone if he’s doing work for no reason at all,
which is why you need to give his work purpose. Many engineers
work on products that have great significance, but they are kept
at arm’s length from the positive effects their products may have
on their company, their customers, or even the world. Even in
cases where the product may have a much smaller impact, you
can motivate your team by seeking the reason for their efforts and
making this reason clear to them. If you can help them to see this
purpose in their work, you’ll see a tremendous increase in their
motivation and productivity.16 One manager we know keeps a close
eye on the email feedback the company gets for its product (one of
the “smaller-impact” products), and whenever he sees a message
from a customer talking about how the company’s product has
helped the customer personally or helped the customer’s business,
he immediately forwards it to the engineering team. This not only
motivates the team, but also frequently inspires them to think about
ways they can make their product even better.

Final Thoughts
Regardless of whether you ever intend to lead a team, we hope this
chapter has helped you understand what it takes to be a good team
leader and dispelled some of the myths about what a leader does
for a team. Even if you’re resolute in your commitment to never be
a leader, it’s good to be familiar with the concepts laid out in this
chapter because they can help you understand why the leader of
your team does what she does, regardless of whether she’s good at
her job or terrible at it. Take a moment to look at your team and see
which of these patterns and antipatterns your team leader applies to
make your team succeed (or fail), and you’ll have a more concrete
understanding of what makes your team tick.

But understanding the team and leader you work with every day
is only one aspect of working with other people—crossing paths
with someone outside your team can be even more challenging,
especially if this person is out to sabotage your team. We call these
“poisonous people,” and we discuss them in the following chapter.

16 http://www.management.wharton.upenn.edu/grant/Grant_JAP2008b_TaskSig-
nificance.pdf

http://www.management.wharton.upenn.edu/grant/Grant_JAP2008b_TaskSignificance.pdf
http://www.management.wharton.upenn.edu/grant/Grant_JAP2008b_TaskSignificance.pdf

 85

C H A P T E R 4

Dealing with Poisonous People

As the opening quote of our book suggests, the hardest part of
software development is people.

Up until now, we’ve taken an introspective approach. We began
with an examination of your own private behaviors and how to
focus them on the principles of humility, respect, and trust (HRT).
We then explored ways to build a communicative team culture
around these concepts. In the preceding chapter, we explained how
to mold yourself into an effective leader of such a team, should the
need arise.

In the second half of this book, we’re going to shift gears and start
looking outward. How does your team interact with people outside
your immediate group? There are almost always folks wishing to
join or collaborate with your team. There are issues in dealing with
the politics of your larger organization. And, of course, you need to
have a plan for dealing with the most important outsiders of all: the
users of your software!

In this chapter, we’ll discuss the importance of preventing destructive
outsiders from trashing the cooperative culture your team has
worked hard to build. Perhaps more importantly, we’ll also talk
about how to deal with poisonous people already on your team.

86 ChApter 4

Defining “Poisonous”
We’ve already reviewed the importance of building a solid,
communicative team culture. We spent most of the time talking
about what a good culture should include: things like consensus-
based development, high-quality code, code reviews, and an
environment where people feel comfortable to try new things and
to fail fast.

Just as important is the need to talk about what your culture should
not include. If you’re trying to build a highly efficient, fast-moving
team, it’s important to focus on what you don’t want. While
brilliant engineers can make your team faster and more efficient,
certain antibehaviors can make your team slower and less efficient,
and make your company a less comfortable place to work—and
eventually erode the bonds that hold the team together.

When we first began speaking about the social challenges of software
development at conferences, we came up with a presentation titled
“How to Deal with Bad Eggs.” The conference chair suggested
we rename the talk to “How Projects Survive Poisonous People,”
with the hope that a more tabloidlike title would draw a bigger
audience. And he was right: we gave the presentation over and
over at different conferences to standing-room-only crowds. It’s
not just the sensational negativity of a word like poisonous that
attracted people, but the fact that everyone seems to have some
sort of personal experience in dealing with irritating people. The
talks would almost always turn into a group therapy session, with
audience members swapping war stories and seeking advice.

But there’s a danger here. In general, it’s not healthy to spend one’s
time stewing in an ocean of negativity—it tends to eat you up and can
create more conflicts in the long run.1 The term poisonous person is
a nasty label and automatically creates a dividing line between “us”
(the good guys) and “them” (those nasty jerks). There’s a better
way to think about the problem. Instead of running your team as
an elite fraternity with a mission to repel mean people, it’s healthier
to create a culture that simply refuses to tolerate certain negative
behaviors. It’s the behaviors you want to filter out, not particular
individuals. It’s naïve to think of individuals as purely good or bad;

1 Yoda would probably have something to say here about avoiding the Dark Side.

DeAlInG WIth pOISOnOuS peOple 87

it’s more constructive and practical to identify and reprimand the
intolerable behaviors.

For now, we’ll continue to use the term poisonous person as a
simplifying piece of rhetoric, one that refers to a person who isn’t
behaving well. In practice, though, this is probably not the term
you’d want to use in everyday conversations!

Fortifying Your Team
Recall our yeast metaphor: how a team culture grows from an
important starter culture. The biggest single influence on the long-
term culture of your team is the team you start with, and if the
founding team doesn’t establish a strong enough culture, strains of
other cultures will overgrow it. If your starter team builds a strong
sense of acceptable and unacceptable behaviors, these expectations
will endure for many years.

The two of us have spent a lot of time in the world of open source
projects, and our own experiences jibe with this idea pretty strongly.

The project we were most involved with—Subversion—was started
by a very small group of people. They had a lot of humility and
naturally trusted and respected one another. After 11-plus years,
the project has gone through at least three or four generations of
participants (the founders are mostly gone), and yet the same culture
persists—everyone is kind, is polite, and expects that same behavior
from everyone else. The culture perpetuates not just because of
high standards, but because cultures tend to be self-selecting. Nice
people tend to be attracted to existing nice communities.

Self-selection can easily work in the other direction as well. When a
team is started by a group of angry jerks, the effort tends to attract
more and more individuals of the same sort. Certain projects that
we won’t mention here (like the Linux kernel community) are keen
examples of this—endless bickering, chest thumping, and sniping.
The team may get a lot of work done, but the overall efficiency of
its operation is doubtful. How much more work would get done
if so much energy weren’t being spent on personal attacks? How
much potential contribution is lost because polite people are being
driven away at the front door?

88 ChApter 4

Fortify your team against unacceptable behaviors.

We bring up this topic again because you need to understand
what’s at stake: poisonous people are a direct threat to your high-
functioning team. If you allow bad behaviors to persist, not only
does your productivity decrease, but also you may find your culture
slowly changing for the worse. The best defense is to fortify your
culture through a strong set of best practices and procedures. We
covered them in Chapter 2, but here’s a quick refresher:

•	 Have a visible mission statement, to keep you focused on both
your goals and nongoals.

•	 Establish proper etiquette around email discussions. Keep
archives, get newcomers to read them, and prevent filibustering
by noisy minorities.

•	 Document all history: not just code history, but also design
decisions, important bug fixes, and prior mistakes.

•	 Collaborate effectively. Use version control, keep code changes
small and reviewable, and spread the “bus factor” around to
prevent territoriality.

DeAlInG WIth pOISOnOuS peOple 89

•	 Have clear policies and procedures around fixing bugs, testing,
and releasing software.

•	 Streamline the barrier to entry for newcomers.

•	 Rely on consensus-based decisions, but also have a process for
resolving conflicts when consensus can’t be reached.

The bottom line is that the more ingrained these best practices are,
the more intolerant of poisonous behavior your community will be.
When troublemakers arrive, you’ll be ready.

Identifying the Threat
If you’re going to defend your team against poisonous people, the
first thing you need to do is to understand exactly what constitutes
a threat and when you should become concerned.

What’s specifically at risk is your team’s attention and focus.

Attention and focus are the scarcest resources you have. The bigger
the team, the more capacity the team has to focus on writing
software and solving interesting problems—but it’s always a finite
amount. If you don’t actively protect these things, it’s easy for
poisonous people to disrupt your team’s flow. Your team ends up
bickering, distracted, and emotionally drained. Everyone ends up
spending all their attention and focus on things other than writing
great software.

Meanwhile, one has to wonder: what does a poisonous person look
like? To defend yourself, you need to know what to look out for.

In our experiences, it’s rare to find people who are deliberately
being malicious (i.e., are trying to be jerks on purpose). We call
such people “trolls” and typically ignore them. Most people who
behave badly, however, either don’t realize it or simply don’t care.
It’s more an issue of ignorance or apathy, rather than malice. Most
of the bad behaviors boil down to a simple lack of HRT.

90 ChApter 4

You must protect your team’s attention and focus.

Here are some classic signals and patterns to watch for. Whenever
we see these patterns, we talk about “flipping the bozo bit” on
the person—that is, we make a mental note that the person is
consistently exhibiting poisonous behaviors and that we should be
extremely careful in dealing with her.

Not Respecting Other People’s Time

There are certain people out there who simply are unable to figure
out what’s going on in a project. Their damage is most often in the
form of wasting the team’s time. Rather than spending a few minutes
of their own time reading fundamental project documentation,
mission statements, FAQs, or the latest email discussion threads,
they repeatedly distract the entire team with questions about things
they could easily figure out on their own.

In the Subversion project, we once had a participant who decided
to use the main developer discussion forum as a sounding board
for his daily stream of consciousness. Charlie made no actual
code contribution. Instead, every two or three hours, he’d send
out his latest daydreams and brainstorms. There would inevitably
be multiple responses explaining why his ideas were incorrect,
impossible, already in progress, previously discussed, and/or already
documented. To make things worse, Charlie even started answering
questions from drive-by users, and answering them incorrectly.
Core contributors had to repeatedly correct his replies. It took us

DeAlInG WIth pOISOnOuS peOple 91

quite a while to realize that this affable, enthusiastic participant
was in fact poisonous and draining our collective energy, and later
in this chapter we’ll talk about how we dealt with the situation.

Ego

Perhaps ego isn’t the perfect word here, but we’re using the term to
describe anyone who is incapable of accepting a consensus decision,
incapable of listening to or respecting other points of view, and
incapable of reaching compromises. This person will typically
reopen discussions that have been long settled (and documented
in email archives) because she wasn’t around to participate in the
decision. The person won’t read or think about the history at all,
demanding that the debate be replayed just for her sake. She will
often make sweeping claims about the project’s success, claiming
that doom is imminent unless she gets her way.

The Subversion project had a notable episode in which an intelligent
programmer showed up on the email list one day and declared
that the entire product was ill-designed. He had seen the light, had
radical ideas about how things should work, and insisted that the
entire project start over from scratch. He even helpfully volunteered
to lead the reboot himself. Without his leadership, he proclaimed
that complete failure was looming just around the corner.

An entire week was wasted while the project founders endlessly
argued with this person and defended their original design decisions.
A huge amount of attention and focus was lost. It became clear that
this person wasn’t willing to compromise or integrate any of his
ideas into the current product, and the product (which was already
in beta and being used in the wild) wasn’t about to start over. At some
point we simply had to walk away from the debate and get back
on track. Ironically, years later, this person’s predictions turned out
to be correct on many levels, but that didn’t stop Subversion from
becoming wildly successful anyway—at least in corporate software
development. The point here isn’t about who is right or wrong, but
whether a disagreement is guaranteed to come to a conclusion and
whether it’s worthwhile to keep a debate going. Never stop asking
yourself those sorts of questions; at some point you need to decide
when it’s time to cut your losses and move on.

92 ChApter 4

Overentitlement

Anytime you have a visitor who demands that something be
done, your alarm should go off. The person puts all her energy
into complaining about the inadequacies of the software, but is
unwilling to directly contribute in any way.

This sense of entitlement sometimes bleeds into troll-like behavior.
While running Google’s Project Hosting service, we once had a
project owner ask us to ban a user for obscene behavior. The open
source project, a video game emulator, didn’t work properly for his
favorite video game. The user started by filing a rather rude bug
in the issue tracker. The project developers politely explained why
the game didn’t work yet, and why it was unlikely to be fixed for a
good while. This answer was unacceptable to the user, who began to
harass the developers daily. He would open bug after bug with the
same complaint. He started adding comments to other bugs saying
what “idiots” the developers were for refusing to fix his problem.
His language became increasingly obscene over time, despite
repeated warnings from the developers and Google administrators.
Regardless of all our efforts to eliminate his destructive behavior,
he steadfastly refused to change, so we were eventually forced—as
a last resort—to ban him entirely.

Immature or Confusing Communication

The person doesn’t use her real name. Instead, you’ll see only childish
nicknames like “SuperCamel,” “jubjub89,” or “SirHacksalot.” To
make things worse, often the person will have different nicknames
in different media—one name for email, a different one for instant
messaging, and perhaps a different one for code submissions. In
extreme cases, you’ll see these people communicating in lol-speak,
1337speak, ALL CAPS, or with excessive punctuation!??!1!!1!!

Paranoia

As seen in the earlier example, sometimes an inappropriate sense of
entitlement leads directly into open hostility toward a project. Many
times we see it escalate into complete paranoia. When an existing
team disagrees with the visitor, the poisonous person will sometimes
start to throw accusations of a “cabal” and conspiracy. It’s amusing
to imagine that the project finds the visitor so important that they’d
go through the effort of conspiring against the visitor. And if you

DeAlInG WIth pOISOnOuS peOple 93

already have an open and transparent culture of communication
(as we pushed for in Chapter 2), this makes the accusation all the
more hilarious, since every conversation is already a public record.
The recommendation here is to not even bother responding to such
charges. By the time the poisonous person goes this far over the
edge, anything you say will only dig yourself a deeper hole in his
mind, so why bother saying anything at all? It’s time to get back to
the important work of coding.

Perfectionism

On the surface, perfectionists don’t seem dangerous at all. Sure,
there may be a touch of odd obsessive-compulsive behavior now
and then, but usually the person is humble, polite, respectful, and
a good listener. He seems stuffed full of happy HRT and good
intentions. What’s the problem, then? The problem is the threat of
paralysis.

Let’s look at a person we’ve worked with in the past. Patrick was
a brilliant engineer. He had great design chops, wrote high-quality
code and tests, and was easy to get along with. Unfortunately, when
it came time to design new software, he could spend the rest of his
life tweaking and improving his design. He was never satisfied with
the plans and seemingly was never ready to start coding. While he
certainly had good points and excellent insights into the problems
we were trying to solve, the rest of the team ended up becoming
immensely frustrated; it became clear that we were never actually
going to write any code. Several of us on the project deliberated
quite a bit on what to do about this. On the one hand, Patrick was
a huge help to our team. On the other hand, he was preventing
us from making forward progress as a group. Every time we’d
begin to code he’d politely veto and point out potential theoretical
problems that could matter in the distant future. He was paralyzing
us without realizing it. We’ll talk about how we resolved this in the
next section.

Repelling the Poison
Recall that we don’t advocate throwing people out just because
they’re being antisocial or rude. As we mentioned earlier, it’s not
healthy to create a clique focused on “us” (the nice people) versus
“them” (the mean people). In our prior examples notice that we

94 ChApter 4

didn’t focus on booting the person, but rather on booting the
behavior. Bad behaviors will not be tolerated. If, after repeated
warnings, the behavior doesn’t change, only then does it makes
sense to consider formal rejection.

Concentrating your effort on removing toxic behavior is often
enough to turn an intelligent (although perhaps socially awkward)
person into a productive member of your team. A few years ago
we had a team member who was an excellent engineer, but had
an annoying habit of accidentally insulting teammates. Rather
than just ejecting him from the community, one of us pulled him
aside and asked him if he was aware that his words were alienating
people. He seemed somewhat surprised that this was happening
and didn’t exactly understand why his actions were having this
effect. But he agreed that it would be worthwhile to try to temper
his actions in the interest of being a better team member. And
everything worked out perfectly. He changed his behavior, and the
problem was resolved. Not every anecdote ends in exile!

OK, so you’ve identified a poisonous person. Perhaps there’s
someone distracting and draining your team’s energy right now.
How do you deal effectively with the situation? Here are some
useful strategies.

Redirect the Energy of Perfectionists

Once a good-enough solution is found for the original problem,
point the perfectionist to a different problem that still needs
attention.

In the case of Subversion’s perfectionist, this strategy worked well.
Eventually, we reached a point where we took Patrick aside and
said, “OK, we’re just going to start working from this design as it
stands now, and see what happens. Hopefully you’ll be able to help
us navigate around any problems that crop up down the road.” To
our surprise, Patrick was OK with this and instead moved on to
a different subject as the object of his obsession. No feelings were
hurt either way, and Patrick kept contributing to the overall effort.

There’s an old saying to not let “the perfect be the enemy of the
good,” and in your quest to create a high-performing team, you
need to be just as vigilant about avoiding perfectionism as you are
about calling out more obvious disruptive behaviors.

DeAlInG WIth pOISOnOuS peOple 95

This trick of redirecting energy also works on the overly entitled
people who spend more time complaining and criticizing than
helping out. It’s tempting to respond to such a person with a
standard “patches welcome” remark—the open source community’s
euphemistic version of telling someone to put up or shut up. Instead,
try getting him to take an interest in formally testing the software
and pointing out regressions. It allows him to keep complaining,
but in a useful way.

Don’t Feed the Energy Creature

This is an old adage from Usenet.2 In particular, this works best
against deliberate trolls—people who are purposely trying to get a
rise out of you or your team. The more you respond, the more the
troll feeds off your energy, and the more time you’ve wasted. The
simple silent treatment often works best. Regardless of how much
you’re dying to deliver that one-line zinger that’ll put him in his
place, resist the urge. When the person realizes nobody’s paying
attention, he typically loses interest and just leaves. Note that it
often takes quite a bit of willpower to not respond. Stay strong!

2 Which may itself refer to that original Star Trek episode, “Day of the Dove,” in
which negative emotions fed an energy creature. Kirk and his Klingon counter-
part Kang ordered their men to stop feeding the energy creature, and it departed
from the Enterprise. See, it all comes back to Star Trek.

96 ChApter 4

Don’t Get Overly Emotional

Even if the person isn’t deliberately trolling, it’s all too easy to get
defensive. When somebody accuses you of making a bad design
decision or of conspiracy, or simply wastes your time by asking too
many questions whose answers are obvious, it’s easy to get upset.
Remember that your job is to write great software, not to appease
every visitor or repeatedly justify your existence. The stronger
your emotions are, the more likely you are to waste hours or days
writing passionate replies to someone who doesn’t deserve such
attention. Choose your battles carefully and keep calm. Carefully
decide who’s worth replying to, and who you’ll let be.

Look for Facts in the Bile

Continuing on with the theme of staying clear of too much emotion,
a corollary is to actively look for facts. If someone is complaining,
listen carefully. Always start by giving the person the benefit of the
doubt, despite the angry or rude language. Does the person have a
real point? Is there something to learn from the person’s experience,
or is there an idea worth responding to? Very often the answer
is “yes”—that despite a poisonous person’s vitriolic prose, some
wisdom really is buried in there. Always bring the argument back
to a technical discussion.3

Our favorite example of this is the day we got a rancorous email
from a well-known leader of the open source community. It was a
bug report of sorts, but on the surface it was more like a rant about
the team’s overall intelligence. The post was chock-full of slander
and hyperbole, and seemed intended to inflame the team rather
than to get the bug fixed. One of our team members, however,
responded to the report with just a few specific questions, focusing
only on the bug. The bug reporter replied with more clarification,
but still it was wrapped in over-the-top venom. Our team member
continued to completely ignore the insults, investigated the issue,
and replied with a simple “Thanks for the bug report, I see how to
fix the problem—we’ll release a patch soon.”

3 For more on this subject, see Norman Kerth’s “The Retrospective Prime Direc-
tive,” in his book Project Retrospectives (Dorset House).

DeAlInG WIth pOISOnOuS peOple 97

We were immensely proud of the way our team member handled
the situation. Remaining utterly calm and fact-driven only made
the original poster seem like more of a lunatic as the conversation
progressed. By the end of the exchange, the bug reporter had lost
all credibility with his audience and no longer had any interest in
hanging around.

Repel Trolls with Niceness

To take the preceding approach (of remaining cool-headed and
factual) even further, sometimes it’s possible to scare people away
just by being too kind! Here’s an actual chat transcript from the
Subversion IRC channel:

harry: Subversion sucks. This is quite a nuisance.

sussman: If you need help, then ask.

harry: I want to cvs someone’s files. No, I just want to

gripe. But this person is hung up on this thing called

Subversion so he has svn instead of cvs.

sussman: So get an svn client and checkout his sources.

harry: So I go and download this Subversion thing...can

you configure make make install Subversion like you can

cvs? Of course not. I blame him more than the subversion

people.

sussman: Just because *you* can’t ./configure; make;

make install doesn’t mean there’s a big widespread bug.

People do that with the svn tarball every day.

harry: I didn’t say there was a bug.

sussman: Do you think we would have released the tarball

if something that fundamental were broken?

harry: I am just griping about this bozo. I just have to

install expat or libxml. *sigh*

sussman: Those things are usually pre-installed on most

systems.

98 ChApter 4

sussman: Is this guy using an apache server? Perhaps you

should just grab a binary.

harry: I don’t know, he just says svn...

sussman: Which distro are you on?

harry: FreeBSD

sussman: Just cd into the ports tree and make the port.

harry: You people are ruining my rant...I came here

looking for an argument...you are too helpful and

friendly.

sussman: :-)

harry: When the hell do you come to an IRC channel and

everyone tries to help you? Blah.

— Harry has quit

Know When to Give Up

Sometimes no matter how hard you try, you simply need to flip
the bozo bit and move on. Even if you’ve already spent a lot of
attention and focus trying to correct bad behaviors, you need to
know how to recognize a lost cause.

Let’s return to our story about Charlie, the friendly philosopher who
was posting far too often to the Subversion email list. Eventually
we did an analysis of the email discussions and discovered that this
participant had grown into the third most frequent poster over the
course of two months; the first and second most frequent posters
were core project contributors, and 70% of their posts were spent
replying to Charlie! Clearly our energy and focus were being sucked
away, despite no ill will from Charlie himself. Our final solution
was to privately email him (and politely) ask him to stop posting
so often. It was a difficult conversation to have, mainly because he
was unable to see the amount of disruption he was causing. After
a few more weeks without a significant behavioral change, one of
us actually had a long (and even more difficult) discussion with
him over the phone where we asked him to stop posting altogether.
He ultimately withdrew as requested, a bit sad and confused, but
respectful of the team’s wishes. Everyone felt a little guilty about it

DeAlInG WIth pOISOnOuS peOple 99

because he never quite understood the harm he was causing, but
everyone also felt it was the right thing to do. It was a delicate
situation to resolve, but we used a great deal of HRT to keep things
civil and appropriate.

Focus on the Long Term

The path to a mature software product is lined by thousands
of distractions. If there’s a common theme in dealing with the
distraction of poisonous people, it’s that it’s all too easy to get caught
up in the immediate drama of a situation. If you’re witnessing what
you think may be poisonous behavior, you need to ask yourself two
critical questions:

•	 Despite the short-term loss of your team’s attention and focus,
do you truly believe the project will still benefit in the long run?

•	 Do you believe the conflict will ultimately resolve itself in a
useful way?

Focus on what matters, not on short-term drama.

If your answer to either of these questions is “no,” you need to
intervene to stop the behavior as soon as possible. It’s easy to
persuade ourselves that the short-term gain of tolerating poison is
worth it, but it usually isn’t: for example, somebody may be a great
technical contributor but still exhibit poisonous behavior. There’s
a temptation to turn a blind eye to the behavior in order to benefit
from the technical advancement. But be careful! A strong culture

based on HRT is irreplaceable, while technical contributions are
definitely replaceable. To quote a former teammate of ours:

I have several friends who know him to some degree. One of
them said, “He often walks the fine line between genius and
lunatic. The problem is, genius is such a commodity these
days that it’s not acceptable to be an eccentric any more.”

—Greg Hudson

Of course, Greg isn’t talking about literal “genius” here; he’s
pointing out that the world is full of highly competent programmers.
If you find one who’s offensive or threatens your culture over the
long term, it’s best to wait for another one to come along.

We once encountered this sort of situation in the Subversion project.
The team has a strict policy of not putting names into source code
files (the very policy we discussed in Chapter 2!): we feel it creates
territoriality. People are afraid to change code if it has somebody
else’s name on it, and it keeps the bus factor artificially low. Instead,
we allow the version control’s history to credit people appropriately,
and we keep a single top-level file with all the contributors’ names
in it.

One day a smart programmer showed up and volunteered to write
a sizable new feature that was sorely needed. He submitted the code
for review, and our main feedback was simply requesting that he
remove his name from the top of the file—that we’d credit him in
the same places as everyone else. He refused to do this, however,
and the debate led to an impasse. In the end, the decision was made
to reject his code and he left, taking his toys with him. Of course,
everyone was disappointed, but we didn’t want to violate our
policy (and dilute our traditions) just to get the new feature sooner.
A couple of months later, someone else ended up reimplementing
the feature anyway.

To be totally explicit: it’s not worth compromising your culture for
the short-term gains—particularly if it’s about a brilliant contributor
who doesn’t acknowledge the importance of HRT.

DeAlInG WIth pOISOnOuS peOple 101

A Final Thought
This chapter discussed quite a number of scenarios, and after taking
everything in it’s easy to develop a deep sense of paranoia. Please
remember that most of the world isn’t full of jerks. As the saying
from Robert J. Hanlon goes:

Never attribute to malice that which is adequately explained
by stupidity.

We prefer to use the term ignorance rather than stupidity, but the
idea is the same. As we mentioned in the beginning, it’s naïve to
think of people as Good or Bad. There are no evil people out there
trying to deliberately crush your culture—most of them are simply
misinformed or misguided. Or perhaps they just want recognition
and are too socially inept to fit in. Either way, your job isn’t to
cultivate condescension and lock out the less-enlightened peasants
from your project; rather, your job is to be intolerant of destructive
behaviors and to be explicit about your expectations of HRT. It
takes wisdom to understand the difference and real skill to carry
it out.

 103

C H A P T E R 5

The Art of Organizational
Manipulation

So far we’ve shown you how to handle the human side of you and
your team. We’ve reviewed the basic people skills required for
leading a team of engineers and the hazards of dealing with the
threat of poisonous people. In addition to these skills, you also need
to understand how to navigate good and poisonous companies
alike. Most software engineers work in dysfunctional corporate
bureaucracies and need to employ certain manipulative techniques
to get things done effectively. Some people call this politics; others
call it social engineering.

We call it organizational manipulation.

The Good, the Bad, and the Strategies
Big companies are complex organisms, and even the best require a
GPS, a flashlight, and a dump truck full of breadcrumbs to navigate
from one end of the company to the other.

104 ChApter 5

Navigating corporations can be daunting.

First we’ll cover how a team typically functions in an ideal company,
and then we’ll discuss the various ways a dysfunctional company
can put up roadblocks to your team’s success. We’ll review strategies
for getting things done in both kinds of companies, and lastly, if all
else fails, we’ll cover Plan B.

The Ideal: How a Team Ought to Function
Within a Company
There are two levels of a properly functioning company: your
manager, who you’ll deal with most of the time, and the corporation
beyond your manager, which includes engineers, middle managers,
executives, salespeople, lawyers, and so on.

Focus on the task at hand...

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 105

Your Life Under an Ideal Manager

If your manager is a servant leader who employs HRT and is
truly interested in helping you succeed (see Chapter 3), there are
a few simple things you can do to help make her job easier, and
consequently make yourself more productive and a more valuable
team member.

Pursue extra responsibility as you’re getting your work done. One
of our favorite metaphors for this is the forest ranger who sends
you, a junior ranger, into the forest to cut down a sick or damaged
tree. If you’re focused merely on the task at hand, you’ll go into the
forest, cut down the sick tree, and return triumphant. If, however,
you’re thinking about the bigger picture, you’ll go into the forest,
cut down the sick tree, and return with a map of all the other
sick trees you encountered on your journey, along with a plan for
efficiently cutting them down if the senior ranger agrees that this
is the best plan of action. As a result of this kind of action, the
next time the forest ranger has a task that requires that level of
responsibility she’ll likely give you the first shot at it. She’ll do this
not only because she knows you can do it, but because that’s the
path of least resistance—it’s less work for her.

...but overdeliver on what’s expected of you.

This kind of proactive, responsibility-seeking behavior reduces
your manager’s workload because she has one less thing to worry
about, and it shows that you’re capable of doing work beyond
your current level. This also means you’ll likely have to leave your
comfort zone and try new things, and that’s OK if you’re on a team
where you’re encouraged to take risks and fail fast.

106 ChApter 5

Take risks and don’t fear failure. We talked a lot in Chapters 3
and 4 about the importance of taking risks and failing fast. In the
presence of an enlightened manager, failing is a great way to learn
quickly, discover the limits of what you can and can’t do, and grow
those limits over time. Our friend Steve Hayman, who travels a lot
for work, has often said, “If you don’t miss at least one flight a year,
you’re getting to the airport too early.” This is a great metaphor for
software development: if you don’t fail at least once a year, you’re
not taking enough risks. And like the pursuit of extra responsibility,
taking risks is a way to show you’re capable of bigger things.

If you don’t take risks in your work, you’ll have fewer failures, but
you’ll have fewer big successes as well. A good manager wants a
team that’s willing to push the envelope to see what they can and
can’t do (and to learn a lot in the process), and she’ll provide a soft
landing for when you fail. When you fail, take responsibility, don’t
seek to assign blame, and document what happened and what you
can do to avoid that same failure again. Lather, rinse, repeat.

Act like an adult. Another recommendation in a long line of
suggestions that seem glaringly obvious: you are responsible for
teaching people how to act and how to treat you. Bad managers
will frequently train their teams to act like children by squashing
any initiative, responsibility, or rule breaking. If you’ve had one of
these managers, you often come to expect this sort of treatment
from all managers.

Question things that you’re unsure about. If your manager makes
a decision that you disagree with, don’t be afraid to argue with her
or question the premise upon which she made the decision. While
this isn’t a license to be an obstacle, being a “yes-man” isn’t helpful
to someone in a leadership position if you’ve got information or
experience that she lacks.

Your manager is not clairvoyant: only rarely will you find a person
in an organization who overcommunicates, so don’t hesitate to
update your team’s leader on what you’re doing before she asks you
what’s going on. Drop her a quick note when you hit an obstacle,
score a victory, need something, or expect something. Not only is
this a great way to make sure your manager knows what you’re
up to, but we’ve seen crafty engineers take this technique to the
extreme as a way to deal with micromanagement: if your manager
keeps checking in on you, proactively sending her an email at the

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 107

same frequency with which she checks in on you is a surefire way
to get her to back off.

These techniques work well when you’re in the ideal organization,
but what about when your organization is anything but ideal?

The Reality: When Your Environment
Is an Obstacle to Your Success

Happy families are all alike; every unhappy family is
unhappy in its own way.—Leo Tolstoy, Anna Karenina1

There are innumerable ways in which the environment in your
company can work to prevent you from succeeding, but they can
usually be divided into two major categories: bad people and bad
organizations.

Your Life Under a Bad Manager

It’s hard to know where to start when describing the traits of a bad
manager—entire movies and TV shows have been created solely
to lampoon the bad managers of the world. Most of us have had
at least one bad manager in our careers, and a bad manager can
make life on even the greatest team a living hell, so we’re going to
cover just a few of the traits of a bad manager that typically affect
engineers.

Fear of failure is one of the most common traits of bad managers.
This insecurity tends to make them very conservative, which is
antithetical to the work style of the typical engineer. If your manager
doesn’t want you to take risks, there is little opportunity for you to
inject your own ideas into your product and you’ll usually wind up
implementing (by rote) the product that someone else designed.2

Oftentimes the insecure manager will insist on inserting herself into
any interaction you have with people outside your team, thereby
preventing you from speaking directly to other teams without
“going through the chain of command.” This kind of manager will

1 See “Anna Karenina principle,” http://en.wikipedia.org/wiki/Anna_Karenina_
principle.

2 Again, this is an acceptable way to write software, we just don’t think it’s a very
interesting way for top-notch engineers to spend their time.

http://en.wikipedia.org/wiki/Anna_Karenina_principle
http://en.wikipedia.org/wiki/Anna_Karenina_principle

108 ChApter 5

consider any direct contact you make with engineers outside your
team or—heaven forfend—another manager, to be akin to mutiny
or insubordination. If you need anything outside your team or their
organization, this manager expects you to go through her, which
allows her to elevate her importance and subordinate you, thus
giving her more power.

Most of us grew up in school hearing the oft-repeated canard
“knowledge is power.” The bad manager is very much aware of
this, but from a different angle: she wants to keep this power to
herself and not share it with you, no matter how much it might help
you to do your job. This manager hoards information and hides it
from you as a way to make sure she can play a part in anything that
involves that information, which not only keeps you from getting
work done, but also helps her maintain her position of relevance
and power no matter how much it slows down development.

Some people want to hoard information.

By hoarding information and requiring that they be a conduit
for information and communication, bad managers are also able

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 109

to take credit for your successes3 and blame you for your failures
(and sometimes, their failures as well). In many cases, this kind of
bad manager sees your existence solely as a means to get herself
promoted, and she doesn’t care about your career, much less your
team’s happiness.

Our friend Susan had a terrible manager for a number of years, and
her manager would often hand a new project off to Susan with no
context and no information on how to get the project done—even
if Susan had zero knowledge or context about the new task. Susan’s
manager didn’t necessarily want Susan to fail, but if he’d told Susan
all the details he knew about the project, it not only would have
made life easier for Susan, but also would have been easier for her
to circumvent her manager. Having the ability to directly contact
relevant teams would have made them aware that Susan, and not
her manager, was working on this project. Time and time again
Susan would scramble to get up to speed on the new project, get it
done, and then collapse, only to find out through the grapevine that
her manager had taken credit for her work.

In stark contrast to the servant leader we discussed in Chapter 3, the
bad manager wants to know what you’ve done for him lately. And
those low performers on your team? They’re not going anywhere
as long as they don’t grind your team to a screeching halt—it’s too
much work for the bad manager to deal with them.

The Office Politician

While we’re big proponents of trusting people, or at the very least
giving them the benefit of the doubt, trusting the office politician
can be a seriously career-limiting move.

The office politician may be difficult to spot when you first meet
him because he tends to be very good at managing relationships and
dealing with people—he may be quite friendly at first. He usually
does an exceptional job of managing up and an even better job of
using his peers and subordinates as a means for self-promotion.
He’s quick to blame others, but even quicker to steal credit when
given the opportunity. He’s usually not directly confrontational, but

3 Which is doubly frustrating because you managed to succeed in spite of their
interference!

110 ChApter 5

instead prefers to tell you what you want to hear so that you’ll
think well of him. If he can’t use you or manipulate you, he’ll either
ignore you or, if he sees you as a threat, try to undermine you. After
you’ve worked with him for a while, it’s easy to spot him: he spends
more time looking impactful than actually being impactful.

We advise that you steer clear of the office politician: route around
him where possible, but don’t carelessly badmouth him to other
people above him in the organization, because it’s quite difficult to
know who he has hoodwinked and who is wise to him. If you’re the
kind of engineer who is happy to keep your head down and focus
on building interesting technology, you may want to rethink this
strategy when there’s an office politician around. If you don’t put
energy into getting promoted because you don’t want to “play the
game,” you may find that the office politician gets promoted over
you, in which case you’ve now got a bad manager and an office
politician. See “Manipulating Your Organization” for more on this.

The Bad Organization

As companies grow, they develop bureaucracy and processes in
an effort to manage profit, reduce risk, increase predictability, and
support the massive weight of the organization itself. Over time,
this bureaucracy can grow to a point where it prevents the company
from succeeding. As with bad managers, much has been written
about bad organizations, so we’re only going to review a few
examples of organizational issues that most often affect engineers.

It’s a simple fact that most companies are not engineering-focused.
That is to say: engineers are a means to accomplish business goals
that are typically not technical. This means the people running the
company probably don’t understand the technical underpinnings of
their system, just the demands set upon them by the business, and
so they wind up creating unrealistic demands on engineering. Even
if a technically competent executive finds her way into this sort of
company and fights to defend her organization, she’ll frequently
find herself replaced by someone who is willing to sacrifice the

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 111

health and sanity of the employees to meet the needs of the business.
Typically you’ll see this directly in the form of unrealistic deadlines
and lack of qualified technical people to get projects completed
on time. You may have difficulty acquiring enough hardware to
effectively run your product, or find your team spending weeks
rewriting something when a hardware purchase costing only a few
hundred dollars would have done the job. This is unfortunately
typical of a company that doesn’t value engineers and treats them
like slaves, giving them no voice in how the company operates.

The most egregiously bad organizations have ossified command
and control structures that resemble fiefdoms. Years ago, our friend
Terrence worked at a company that had strict rules on passing bugs
between teams, and eventually another team created a bug that
caused Terrence’s product to run out of memory over the course
of a few hours. Instead of emailing the team members who were
responsible for this, or looking at their commit logs or source code,
he stayed up all night reproducing the bug, gathering data, and
building his case. Terrence sent this email to his manager, who
sent the email to his director, who emailed the director of the team
that created the bug. This director emailed that team’s manager,
who figured out who on his team was responsible for the software
in question. More than 10 days later, Terrence found himself in
a meeting with two managers, two directors, and three other
engineers discussing the bug and whether they could get it fixed in
time for their next launch. Sound absurd? Sadly, this sort of thing
happens all the time.4

Other companies are filled with people who are obsessed with titles
and organizational hierarchy. This results in endless power struggles,
with managers often preventing engineers from transferring to
another team in order to protect their own team from losing a
valuable contributor—even when the right thing to do for both the
company and the engineer is to let the transfer happen.

Has your company ever treated you like a naughty child? Are you
unable to get to innocuous external websites due to an overzealous
company firewall? Do you have to carefully account for every

4 In contrast, during Fitz’s first week at Google he found a typo in Gmail. He
opened the source code, fixed the typo, then emailed a patch to the Gmail team,
who thanked him heartily. Big companies don’t always have to have friction!

112 ChApter 5

moment of your day with a detailed timecard? Some organizations
will even go so far as to measure your productivity by meaningless
(and usually wildly inaccurate) methods such as the number of lines
of code you write every week.5

Are you treated like a naughty child?

Still other organizations will breed employees who judge their
success not by the number and quality of products they ship, but by
the number of meetings they’re invited to attend.

Lastly, your company might lack important things like focus, vision,
or direction. This is often the result of too many masters, or “design
by committee,” which results in conflicting orders being sent down
to the rank and file. So you wind up moving in ever-tighter circles
instead of in a coherent direction.

Many bad companies are guilty of these transgressions, and much,
much more. Still, these companies are composed of people, and
there are a number of tips and tricks you can put to bear to get
people to help you out.

Manipulating Your Organization
This is a sparring program, similar to the programmed
reality of the Matrix. It has the same basic rules, rules like
gravity. What you must learn is that these rules are no

5 Shouldn’t we get even more credit for deleting lines of code?

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 113

different than the rules of a computer system. Some of them
can be bent. Others can be broken. Understand? Then hit me
if you can.—Morpheus

Much like the sparring program, companies are made of rules: some
of them can be bent, and others can be broken. If you focus on
the way things should be in your organization, you’ll find nothing
but frustration and disappointment. Instead, acknowledge the way
things are, and focus on navigating your organization’s structure to
find the mechanisms you can use to get things done and to carve
out a happy place for yourself in your company. Whether you’re in
a good organization or a bad one, there are a number of strategies
that we’ve found to be quite effective at getting things done.

“It’s Easier to Ask for Forgiveness Than Permission”6

First and foremost, know what you can get away with in your
organization—while asking for permission does give you an
opportunity to push responsibility onto someone else, it also creates
an opportunity for someone to tell you “no.” It’s important to know
what you can get away with in your organization without explicitly
getting approval from one of your superiors, but wherever possible,
we advise you to do what you think is right for the company.

Even if you’re prepared to beg for forgiveness, choose your battles
wisely—every time you have to plead your case for something or
go up against someone else in your company, you’re spending your
political capital. If you spend all your capital winning a bunch of
battles that just don’t matter, you’re going to find that you have
nothing left in your account when it comes to the important things.
Be strategic and fight for things either that matter or that you’re
pretty sure you have some chance of winning. Blowing all your
capital on a battle you know you can’t win is pointless, stressful,
and career limiting for no good reason.

If you do decide to go the “beg for forgiveness” route, it’s useful
to have colleagues and friends in your company that you can use
as a sounding board for your ideas—especially your riskier ideas.

6 Widely attributed to Admiral Grace Murray Hopper, co-inventor of COBOL and
an incredibly witty computer scientist.

114 ChApter 5

These people should have a good sense of what you can and can’t
get away with in the company as well as which ideas just won’t fly.

When someone in marketing suggested that Fitz raise awareness
of his Data Liberation team among the executives at Google, Fitz
bounced an idea off his sounding-board colleagues: give Data
Liberation–branded bolt cutters and locked boxes of swag (with
the keys locked inside, of course) to the execs. He decided to go
ahead with it and it was a big hit. A few years later, when Fitz was
contemplating printing up some, shall we say, “off-color” swag,
the same sounding board expressed some concern that the plan was
too risky and Fitz decided to nix that plan. If you’re going to act
without asking permission, it’s good to trust your instincts, but a
second opinion from a trusted source is invaluable.

If You Can’t Take the Path, Make the Path

Another strategy for making change in a company is to find ways to
get your ideas accepted at a grassroots level. If you can get enough
people to buy into your idea or use a particular product, it will often
be too late for the bureaucracy to squash you, and management will
be forced to notice and either accept it or act against it (which costs
them, yep, you guessed it, political capital!). This is a strategy that
many engineers used for years, for example, to sneak open source
tools into their daily workflow in order to make their lives a lot
more pleasant.

If you’re trying to persuade someone, a great way to increase
your chances of success is to find several people who agree
with you and get them to drop your idea (or proposal or
request) in a conversation with that person. Even if your
target is totally aware of what’s going on, basic human
psychology dictates that he’ll give more weight to the idea
because it’s hitting him from multiple directions and not
just from you.

Ideas in particular are fascinating things: they can go a long way if
you don’t care who gets the credit! Sometimes you’ll find that people
will spread an idea only if they can take credit for the idea as their

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 115

own, so you need to decide what’s more important: that you get the
credit, or that the idea spreads. Despite the fact that it may pain
you to hear your words coming out of another (perhaps despised)
person’s mouth, it’s often the only way for an idea to travel. We’ve
seen this happen time and time again in companies large and small:
the lofty concepts and ideas coming from an executive’s mouth
originate from someone in her organization. Think about the broad
audience that your idea—which would otherwise go unheard—can
reach in this case!

Make a new path.

Just as with individuals, eliminating bad habits in a company is
difficult. One of Ben’s early teachers used to have a saying: “It’s
impossible to simply stop a bad habit; you need to replace it with a
good habit.” Anyone who’s ever tried to quit smoking is intimately
familiar with this phenomenon. Corporations are the same way—if
you’re going to successfully eliminate a bad habit, find a better one
to replace it. Don’t like a certain weekly meeting? Replace it with a
different kind of meeting or alternate (more effective) ritual. Don’t
like a useless reporting process? Don’t complain about it; write a
useful one that’s too compelling to ignore.

Learn to Manage Upward

Whether you’re a manager or an individual contributor, you need
to spend some of your time managing upward. By this we mean you
need to try to ensure that both your manager and the people outside
your team are not only aware of what you’re doing, but are aware

116 ChApter 5

that you’re doing it well. Some engineers find this mode of “selling
yourself” distasteful, and it may remain so, but the benefits of doing
this are huge.

As we’ll mention in Chapter 6, you need to underpromise and
overdeliver whenever possible. We’re not advocating that you
sandbag all your estimates and pad out your deadlines, but wherever
you can, try to avoid promising things that you can’t deliver, even if
it means saying “no” more often than you’d like. If you constantly
miss deadlines or drop features, other people in the company will
have less of a reason to trust you and will most likely pass over you
when they’re looking for someone to get something done.

As an engineer, try to focus your energies on launching products
over just about everything else. Shipping things gives you credibility,
reputation, and political capital more than just about anything else
in a company. Launching your product is a high-visibility event that
shows you’re accomplishing something. As tempting as it might be
to spend a ton of time cleaning up your code base and refactoring
things, we’ve learned from experience that if you dedicate more
than half of your time to this kind of defensive work, it’s hardly
valued at all and you’ll find yourself in the somewhat embarrassing
position of having nothing (politically) important to show for your
time.7 This is not only a good way to get no recognition, but it’s also
a good way to get your product canceled.

7 We’re not saying that preventing future problems is unimportant, just that it’s
considerably more difficult to impress people outside your team with that sort of
work.

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 117

“Offensive” Versus “Defensive” Work
When Ben first became a manager, it seemed like his team’s productiv-
ity was being crushed under a mountain of accrued technical debt. He
decided that the team’s top priority was to spend a long time doing
nothing but paying back this debt. His superiors gave a cursory nod
to this plan and the work began. Things didn’t go well. Despite the
prior approval, Ben’s manager began to get annoyed and impatient
after a few months—why was the team getting “nothing done”? Ben’s
team was actually quite productive and he tried to show the enor-
mous amount of debt that had been paid back. But it turns out there’s
just no way this sort of work can impress someone; at an emotional
level it’s just fundamentally boring.

After this bad experience, Ben began to categorize all work as either
“offensive” or “defensive.” Offensive work is typically effort toward
new user-visible features—shiny things that are easy to show outsid-
ers and get them excited about, or things that noticeably advance the
sexiness of a product (e.g., improved UI, speed, or interoperability).
Defensive work is effort aimed at the long-term health of a product
(e.g., code refactoring, feature rewrites, schema changes, data migra-
tion, or improved emergency monitoring). Defensive activities make
the product more maintainable, stable, and reliable. And yet, despite
the fact that they’re absolutely critical, you get no political credit for
doing them. If you spend all your time on them, people perceive your
product as holding still. And to make wordplay on an old maxim:
“Perception is nine-tenths of the law.”

We now have a handy rule we live by: a team should never spend
more than one-third to one-half of its time and energy on defensive
work, no matter how much technical debt there is. Any more time
spent is a recipe for political suicide.

Luck and the Favor Economy

Regardless of the kind of company you work in, believe it or not, it’s
not that hard to create a sort of luck for yourself. Richard Wiseman,
the author of The Luck Factor,8 wrote about an experiment he
performed to test the ability of people to spot chance opportunities:9

I gave both lucky and unlucky people a newspaper, and
asked them to look through it and tell me how many
photographs were inside. On average, the unlucky people
took about two minutes to count the photographs, whereas
the lucky people took just seconds. Why? Because the
second page of the newspaper contained the message: “Stop
counting. There are 43 photographs in this newspaper.” This
message took up half of the page and was written in type
that was more than 2in high. It was staring everyone straight
in the face, but the unlucky people tended to miss it and the
lucky people tended to spot it.

He then goes on to note that lucky people “are skilled at creating and
noticing chance opportunities.” We think the same tenet applies to
creating opportunities in companies: if you perform your job to the
letter of the law and focus only on getting your own work done to
the exclusion of all else, there will be few chance opportunities for
you. If you help others get their jobs done when given the chance,
even when it’s not part of your job, there’s no guarantee (nor should
there be a “tit for tat” expectation) that they’ll return the favor, but
many people will gladly repay the favor in the future if given the
chance.

Every company has this sort of gray-market favor economy that
lives outside the org chart. There’s usually something you can
quickly and easily do that benefits your company but is someone
else’s job, and if you keep your eyes open for the chance to do
these things (in many cases, someone will come right out and ask
you to do something for him), you earn a bit of credit in this favor
economy. Think of these credits as a series of small bets: some will
never pay you back, others will pay even money, and still others

8 Published by Miramax (ISBN: 978-1401359416).
9 http://www.telegraph.co.uk/technology/3304496/Be-lucky-its-an-easy-skill-to-

learn.html

http://www.telegraph.co.uk/technology/3304496/Be-lucky-its-an-easy-skill-to-learn.html
http://www.telegraph.co.uk/technology/3304496/Be-lucky-its-an-easy-skill-to-learn.html

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 119

will pay enormous dividends. It’s hard to know which bets will
pay off, but one thing that will pay off over time is that people will
remember you as the person who helped them out in a jam. Later
on, when you’re in a jam and you give them a call, they’re going
to be considerably more likely—even eager—to help you out than
if you gave them a big fat “not my job” response when they came
looking for help. Even if you never get “paid back” you’ll often
learn something new in the process of helping someone, and it feels
good to help other people, so what do you have to lose other than
a little time and effort?

“Some day . . . I will call upon you to do a service for me.”

One of the most interesting things about the favor economy is that
your account doesn’t just empty out when you leave a job or a
company—you’ll frequently be able to call on folks at your company
for a hand even after you’ve left. This is all the more reason that you
should never burn bridges when you leave a company, no matter
how tempting it might seem at the time.10

Get Promoted to a Position of Safety

If you’re like most engineers, you expect a logical promotion
process where all it should take to get promoted is to excel at your
job. Unfortunately, this world exists only in the most enlightened

10 The tech industry is a lot smaller than you think, and people talk more than you
think, so the guy you stick it to today might very well be the person who kills
your job application 10 years from now. Unless you’re planning to move to a
desert island to take up basket weaving, burning bridges will almost always be a
costly mistake. Friends come and go...enemies accumulate.

120 ChApter 5

companies. In most companies you need to put some amount of
effort into “playing the promotion game” to get yourself promoted
(usually in addition to excelling at your job).

If you’re happy with your job, your salary, and your team, you
might choose to not play the promotion game and settle into your
job at whatever title and job level you’re already at. This can leave
you vulnerable in many situations—for example, your company
reorganizes and you get shuttled to a new team, you get a bad
manager, or you wind up under the thumb of the office politician.

The higher in the organization you can get (either as an individual
contributor or as a manager), the more control you’ll have over your
destiny inside the company. Putting a modicum of effort toward
getting promoted when you’re comfortable in your position is a
great way to invest in your security and happiness when something
bad happens to your company or team. Keep track of your
accomplishments and use them in your self-assessment. Update your
résumé and share it with your manager or promotion committee.
Read up on the promotion process and talk to your manager about
what boxes you need to tick off to get promoted, and methodically
work to tick off every box. Even if getting promoted is subjective
and nondeterministic, there’s a lot you can do to increase the odds
in your favor.

Seek Powerful Friends

Every company has a “shadow” org chart that is unwritten but
through which power and influence flow. There are only a few
different types of people who make up the nodes in this graph:

Connectors are people who know people in every corner of the
organization, and if they don’t know someone on a team, they can
find the right person for you. Sometimes getting something done
is just a matter of finding the right person to speak to, and the
connector can help you find that person.

Old-timers may not have a high rank or fancy title, but they
typically carry a lot of institutional knowledge and wield a lot of
influence just because they’ve been around for a long time. These
are great people to go to when you’re trying to understand why the
organization works in a certain way, or if you need a supporter that
a lot of people respect.

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 121

People most often talk about this in jest, but administrative
assistants wield an enormous amount of power and influence in an
organization because they are agents of the executives they work
for. More importantly, they usually do an incredible amount of
work to keep things running smoothly, so anger them at your own
(and your career’s) peril. And never pass up a chance to be nice to
an administrative assistant.

One thing to note about all of these people is that, despite all the
advances in social media and videoconferencing technology, nothing
even comes close to the bandwidth and the intimacy of being face
to face with someone else in real life. If you have an important
meeting with someone in your company and you have the budget to
be there in person, it’s almost always worth the hassle of traveling.
The impact of an in-person discussion etches itself into memory in
ways that phone or video chats can’t compete with.

The last person of power we’ll cover is often overlooked: you. It’s
always easier to manipulate your organization when you’re higher
on the org chart, so even if you’re happy with your salary and current
job, it’s worth it to keep working toward your next promotion, even
if you’re working at the ideal company. Remember: if everything
goes to hell, you’re going to be in a much better place to survive
unscathed if you’re at the top looking down.

How to Ask a Busy Executive for Anything . . . via Email

Work in any big company long enough and you’ll find yourself in a
position where you need to email an executive (or any busy person
you don’t know) to ask him for something. Perhaps you need
something for your product or team, or you are looking to right
a wrong. Whatever the case, this is likely the first time you’ve ever
communicated with this person. In this situation, almost everyone
makes the same rookie mistake: they ramble, rant, and rave.

Fitz (while working at Apple) bought his mom a lemon of an
iMac more than 10 years ago, and on the advice of a coworker
sent a “short” email to Steve Jobs.11 This email served as a rough
prototype of how to effectively ask an executive for help:

11 Fitz initially penned a mostly incoherent rant to Steve, which would have gotten
him absolutely nothing (well, other than a pink slip). His coworker advised that
Fitz keep it short and to the point, and to close with a call to action.

122 ChApter 5

Date: Thu, 1 Feb 2001

To: sjobs@apple.com

Subject: Terrible customer experience with our hardware—

what can I do?

I would deeply appreciate if you could advise me on what

I can do to address this problem. This is embarrassing—

both for Apple and for myself.

I purchased an iMac for my mother last Mother’s Day—she

is the Vice-Principal of a Montessori school in New Or-

leans and uses an old Macintosh at school. She was very

excited to get the iMac, and has even gotten funds for

her school to buy iMacs for their lab.

However, the strawberry iMac I bought for her has turned

out to be a total lemon.

- In July, it went to sleep and never woke up. She

brought it to an Authorized Apple Dealer and they diag-

nosed the problem as a failed logic board and replaced

it.

- She brought it home, plugged it in, it started to

boot, then she got a sad mac and the tones of death. She

brought it back to the dealer. They diagnosed the prob-

lem as a faulty analog board and replaced it.

- In September, I finally convinced her to use the sleep

function again (in lieu of shutdown/boot). The iMac

wouldn’t wake up. Completely unplugging the computer and

plugging it back in eventually got it to boot again. We

have disabled sleep altogether at this point.

- In December, the monitor started flickering colors

from yellow to green to blue. She brought it back to the

dealer yesterday, and that’s where it is now.

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 123

So that’s where I am today. My mother thinks I’ve pulled

some sort of sick prank on her, is telling everyone she

knows that her iMac is junk, and no one I know that

works at Apple knows what to do about it.

Is there anything that I can do to get her a working

iMac (short of purchasing another one)?

Respectfully,

-Fitz

Less than 20 hours later Fitz received a call from someone who
worked for Steve, and two weeks later his mom had a new (non-
lemon-flavored) iMac.

Here’s the big secret: when given a chance to help right a wrong,
more often than not people in positions of power would love to do
the right thing. Unfortunately, the email inbox of these people looks
like a never-ending denial-of-service attack, and if they encounter
an email from someone they’ve never met before that is 3,000
words of solid text with no paragraph breaks, the odds are good
that they’re going to read 15 words in, press the Delete key, and
then move on to the next email.

If, however, they can fix something by reading an email in 10
seconds and waving a magic wand (i.e., mailing one of their minions
to Make It Happen), they’ll likely do it. In fact, after years of trial
and error, we’ve found that shorter emails are even more likely to
get a response.

We call this the “Three Bullets and a Call to Action” technique, and
it will drastically increase your chances of getting action—or at the
very least, a response—from just about anyone you email out of the
blue asking for something,12 not just an executive.

A good Three Bullets and a Call to Action email contains (at most)
three bullet points detailing the issue at hand, and one—and only
one—call to action. That’s it—nothing more. You need an email

12 Warning: if you’re peanut-butter-hula-hoops crazy, this isn’t going to help get
you an interview with the President of the United States, a purchase order from
Chevy for your laser-powered windshield wiper invention, or lunch with the di-
rector of sales for Whole Foods. This technique only applies to realistic requests.

124 ChApter 5

that can be easily forwarded along, and if you ramble or put four
completely different things in the email, the mental overhead is high
enough that your mail will get dropped. The bullet points should
be short sentences (each one should fit onto a single line without
wrapping), and the call to action should be as short as possible.13
Your email should be loaded with HRT: polite, respectful, and
devoid of grammar mistakes and spelling errors. If you positively
cannot help yourself and simply must include more background or
information, put it at the very end of your email (even after your
signature), and label it clearly as “More details” or “Background.”

This is how to ask for a pony.

13 If you want a reply from anyone, make it easier for the person to reply inline.
Don’t ask half a dozen questions in one paragraph—limit yourself to a single
question per paragraph, or ideally, a single question per email.

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 125

In hindsight, we consider Fitz’s prototype email to be a bit too
wordy—if we were writing it today, it would probably look more
like this:

Date: Thu, 1 Feb 2001

To: sjobs@apple.com

Subject: Bad customer experience—can you help?

- I purchased an iMac for my mother, a school admin-

istrator. She was very excited to get the iMac and has

even gotten funds for her school to buy more iMacs for

their lab.

- In July, Apple replaced a faulty logic board, and a

month later, the analog board.

- In September it stopped sleeping correctly, and in

December the monitor started to fail. It’s currently at

the dealer.

My mother is telling everyone she knows that her iMac is

junk, and no one I know that works at Apple knows what

to do about it.

Is there anything that I can do to get her a working

iMac?

Respectfully,

-Fitz

This rewritten email eliminates a lot of the editorial color, but is
now readable by a busy executive in 10 seconds.

In the course of our careers, we’ve used all of these techniques over
and over again to get things done. But sometimes all the tips and
tricks in the world aren’t enough to fix a job.

Plan B: Get Out
In all the years that we’ve spoken about getting things done inside
bad organizations and working with bad people, we always get
people who come up to us after our talks and, exasperated, tell us

126 ChApter 5

they’ve tried everything and just can’t make any improvements or
get anything done, so what can they do? The unfortunate answer
here is a simple one: there’s probably nothing else you can do. Don’t
be a victim. Get the heck out of there.

If you can’t change the system, there’s no point in continuing to put
energy into changing it. Instead, put energy into leaving it: update
your résumé, and start asking your close friends if they know of any
openings for you at other companies. Train yourself in new things.
One of the great things about being an engineer in this day and age
is that good engineers are in high demand, and that gives you the
ability to control your own future.

Once you realize you have this control, it’s incredibly liberating.
If you poke around and discover that you have other job options
available to you, you may discover that you suddenly get a lot more
things done at your work (under a lot less stress) because it’s not
the end of the world if your current employer fires you! We found
this blog post14 from longtime Google engineer Chade-Meng Tan
incredibly inspiring and it has greatly influenced how we do our
own jobs:

Do the right thing, wait to get fired

New Google employees (we call “Nooglers”) often ask
me what makes me effective at what I do. I tell them only
half-jokingly that it’s very simple: I do the Right Thing
for Google and the world, and then I sit back and wait to
get fired. If I don’t get fired, I’ve done the Right Thing for
everyone. If I do get fired, this is the wrong employer to
work for in the first place. So, either way, I win. That is my
career strategy.

I discovered where I got this rebel streak from only very
recently. I realized I inherited it from my dad, which was
very strange to me because when I was growing up, I
perceived my dad as an establishment figure, part of the
very establishment I was rebelling against, so it was a severe
cognitive dissonance for me to think of my dad as a rebel.
But rebel he was.

14 http://www.mengstupiditis.com/2011/06/do-right-thing-wait-to-get-fired.html

http://www.mengstupiditis.com/2011/06/do-right-thing-wait-to-get-fired.html

the Art OF OrGAnIzAtIOnAl mAnIpulAtIOn 127

My dad started his career as a child laborer (yes, one of those
millions of faceless children in developing countries you read
about occasionally in National Geographic), but by mid-
career, he rose up the ranks to become one of the most senior
military officers in all of Singapore. I recently learned that
one reason he was so successful was because he was unafraid
to speak the unpleasant truth to his superiors to their faces,
including Defense Ministers and Prime Ministers. Near the
end of his military career, one of his superiors asked him
what made him so effective. My father replied, “It’s very
simple. Every day on my drive home, I would pass by HDB
flats (public housing in Singapore) and I would always take
an extra look at them. Why? Because after you fire me, that
is where I’d live.”

Some day, when you reach my old age, spend some time
talking to your father about his career, you may be pleasantly
horrified to discover how much you are like your father.

If you’re prepared and know your options, you’re the most liberated
person in the world. Don’t be afraid to get out.

All Is Not Lost
All this talk about quitting or waiting to get fired doesn’t mean that
if you’re unhappy in your job you should dust off your résumé and
hit the streets. On the contrary, your first objective should be to
make the changes necessary to be happy and accomplish your goals
at your job, and this chapter has given you a lot of the tools you’ll
need to do that. If you don’t put the effort into understanding how
to navigate your organization, you’re leaving a huge part of your
destiny to chance.

 129

C H A P T E R 6

Users Are People, Too

We’ve explored a long list of ingredients that are critical to successful
software development.

Start with a small group of smart programmers. Fertilize the team
with a strong culture of humility, trust, and respect. Lead them as a
servant, empowering them to collaborate and make good decisions.
Give them water, sunlight, direction, and intrinsic motivation
as needed. Protect them from negative influences—destructive
behaviors (or environments) that threaten the culture and the
ability to make progress. Bake at 163°C for six months, and you’ve
got some great software. All done, right?

A lot of programmers stop there. They write software for themselves,
are pleased with the end result, and then declare victory.

Unfortunately, that’s not how the real world works. “Good
software” is an overly narrow definition of success. If you’re trying
to pay the bills (or simply boost your résumé) you also need a lot
of other people to use your software and be happy with it. The
software development process doesn’t end with throwing a product
over a wall; it never ends, in fact. People use your software and you
need to react to them, improving the product over time. If you don’t
learn how to master this feedback loop your software will die.

We’ll examine three general phases of user engagement in this
chapter. First you need to get users to notice your software—are
they even aware that it exists? How do they perceive it before they

130 ChApter 6

walk in the door? Then you’ll need to think about what people
experience when they start using your software. Does it meet their
expectations? Is it usable? Does it empower them to do great things?
Finally, we’ll look at how to interact productively with them once
they’re firmly engaged with your creation. All of these interactions
are part of the cyclical nature of software development.

If you’re not on top of these things, all you’ll have is a piece of shiny
software with no users. If that’s the case, maybe it’s time to question
your career choice!

Managing Public Perception
When you hear the term marketing, what’s the first thing that comes
to mind?

If you’re like most folks, the word probably conjures up the image
of a dishonest salesperson, all fake smile and greased-back hair:
somebody who’s all about building an image for a client or product.
If your software is the raw “meat” to be sold, the marketing person’s
job is to add the magic “sizzle” to the steak so that more people
flock to it.

Why does this idea bug us so much? Why do we shudder at the
thought of the marketing person?

Because, as programmers, the marketer represents the antithesis
of engineering culture. We’re obsessed with truth. Either the code
compiles or it doesn’t; the software has a feature or it doesn’t; it
solves a problem or it doesn’t. We don’t “spin” our descriptions
of the world; we state the facts and then work to change them. We
look at the marketing guy and all we see are lies, and we don’t like
being lied to. We want order, predictability, and accurate statements
when it comes to making decisions.

Because we perceive marketing as something that distorts the
truth, it violates the engineer’s instinctive desire for meritocracy.
We believe the best product should always win. And by “best” we
mean the product that objectively is of the highest quality and most
effective, not the one with the slickest TV advertisements. Over and
over we’re disappointed when we see superior technologies lose out:
many believe that Betamax was superior to VHS, that Laserdisc
was better than DVD, or that Lisp is still the best programming
language (we just need to get the word out!). Even in the world

uSerS Are peOple, tOO 131

of version control tools, Subversion has taken over the corporate
world despite the technical superiority of newer systems.

Don’t be this guy.

What’s worse is we perceive marketing folks as overpromising to
customers, which in turn makes software engineers look like they’re
always underdelivering. It makes steam pour from our ears.

We’re here to give you both bad news and good news.

The bad news is that no, you cannot ignore marketing. It actually
matters and you have to deal with it. The good news is that it’s
possible to actively cooperate with marketing. It doesn’t need to be
a sleazy affair when you do it right.

132 ChApter 6

Programmers tend to have an overdeveloped sense of logic, but most
humans are driven equally by logic and emotion. The marketing
folks are masters of emotional manipulation, and that’s why they’re
so effective: they mix the facts with feelings to get attention. If you
want to get new people to use your software, you have to care about
their emotional perception of your software. You cannot change
the way people make decisions.

Apple Inc. is the undisputed master of making technology appeal
to the emotions of nontechnical people. Firmly dating ourselves in
the year 2012, we ask: is an iPhone vastly superior to an Android
phone? Featurewise they’re almost identical. But if a nontechnical
user believes an iPhone is magical, it really is magical, at least to
that user. Perception is reality. Or as we’ve said earlier, “Perception
is nine-tenths of the law.”

It’s tempting to think that the only way to win is not to play, but
this is a game you’re not allowed to ignore. You need at least a
minimal marketing strategy to even get your software in the ring.
Here are some basic things you can do to take control, and they’re
all based on HRT.

Pay Attention to First Impressions

If you’re hungry and searching for a restaurant, how the restaurant
appears from the street really matters. If it seems disgusting or
uninviting you simply aren’t going in. If it’s warm and friendly
and the greeter is kind, you’ll be willing to give it a fair chance.
Don’t underestimate the emotional impact of a well-designed first
experience with your product—if you’ve ever unboxed an iPad or a
Nest thermostat, you know exactly what we mean here.

What is your software like to a newbie? Is it welcoming and does
it encourage exploration? Conversely, for an expert who sits down
to an initial session with your software, does it appear familiar and
sensible? At first glance, does your app scream instant productivity,
or steep learning curve and countless tears? More specifically,
what does a user experience in the first 30 seconds after launching
your software? Don’t just give an intellectual answer (“she sees a
menu of choices, with a login box”) but give an emotional answer
too. How does a new user feel after a minute? Empowered or just
confused? What can you do to improve that feeling? Step back a
level and look at your product’s website. Does it seem professional

uSerS Are peOple, tOO 133

and inviting, like a good storefront? You need to take these things
seriously for your software to be taken seriously.

Underpromise and Overdeliver

Don’t let your marketing people preempt you here. If users ask about
upcoming features or release timelines, take the opportunity to give
overly conservative estimates. If you let marketers spread rumors,
you’ll end up with a Duke Nukem Forever situation—software that’s
teased for shipping 15 years late. But if your own (more accurate)
message gets out first, your users will always be thrilled. Google
is great at this; it has a deliberate policy of not preannouncing
features for any product. When new features roll out they’re often
a delightful surprise. It also prevents internal death marches to meet
unrealistic advertised launch dates. The software is released when
it’s actually ready and usable.

Work with Industry Analysts Respectfully

A lot of programmers hate the media industry—it’s just marketing
in another guise. When a trade magazine or research firm comes
knocking on the door, a lot of companies will drop everything and
kowtow to their requests. They realize that a good (or bad) review
can make or break a product’s perception. Engineers tend to resent
this sort of power and deference, though.

For example, there was a time when members of the Apache
Software Foundation (ASF) had problems interacting with analysts.
An analyst would ask the ASF for industry-standard white papers
describing their Apache HTTPD server, and the typical snarky
response might be, “Go read the documentation on the website, like
everyone else.” While this satisfied the open source developers’ deep
commitment to meritocracy, overall it was counterproductive to
public perception—particularly among corporate users. Eventually
the ASF “PR person” worked to reeducate a number of community
members about this attitude and deal more productively with
analysts. Passive-aggressively fighting the system—no matter how
irritating it is—just doesn’t make sense. It’s no different from telling
the restaurant reviewer to get back at the end of the line. Should the
reviewer get preferential treatment? Probably not. But is it worth
sticking it to him as a matter of principle? Probably not. You’re
only hurting yourself in the process. Choose your battles carefully.

134 ChApter 6

How Usable Is Your Software?
Here’s a hard truth: unless you’re developing software tools,
engineers are not the audience of your software. The corollary is
that you, as an engineer, are a terrible evaluator of your software’s
usability. An interface that seems totally reasonable to you may very
likely make your nontechie neighbor pull out her hair in frustration.

If we assume that “successful software” means “lots of people use
and love your software,” you need to pay deep attention to your
users. Google has a famous motto:

Focus on the user, and all else will follow.

The user should be the center of your attention.

uSerS Are peOple, tOO 135

It sounds fairly campy, but as Google employees we’ve watched
this maxim play out over and over across multiple projects. We’ve
witnessed projects succeed and fail based on this truth.

One of Google’s big breakthroughs was to begin measuring the
effectiveness of search ads. If users click on a particular ad, it must be
useful to them; if it never gets clicks, it must be annoying or useless.
Bad ads get removed from the system and feedback is given to the
advertiser to improve its ads. At first this seems counterproductive
for the short term: Google is actively rejecting revenue sources.
But by making the searcher (rather than the advertiser) the focus
of attention, it dramatically increases the usefulness (and usage) of
Google’s search advertising system over the long term.

Let’s talk about some important ways you can focus directly on
your users.

Choose Your Audience

First things first: imagine your users fall across a spectrum of
technical competence.

The possible users of your software

If you were to draw a vertical line showing which set of users are
best suited to your software, where would you put it? A vertical
line through the center of the bell curve means that about half of all
computer users would be happy using your software (i.e., those to
the right of the line).

136 ChApter 6

Since we’re pretty familiar with the landscape of version control
software, we can illustrate by showing you where we think
Subversion falls. We’d like to think its interface is simple enough
that even some set of nontechnical users can learn to use it:

How usable is Subversion?

On the other hand, distributed version control systems can be a good
deal more complex. Git and Mercurial are mature products with
nearly identical features, though (at the time of this writing) Git gets
the lion’s share of attention among alpha-geek programmers. We’ve
always been preferential to Mercurial because of its much simpler
interface. Mercurial is extremely similar to Subversion and tries
very hard to be consistent and use intuitive command and switch
names; it hides implementation details. Git, on the other hand, has
an interface like a bunch of exposed circuits and wires. Most users
are eventually required to understand its internal architecture just
to be able to use it effectively! Many Git users we know memorize
“magic” incantations that work for them, but live in slight fear that
the software will eat their work if they accidentally misstep.

That being said, Git is enormously popular among alpha geeks for
a lot of the same reasons Unix-like operating systems are: it’s hard
to learn, but also provides raw access to outrageous power. It’s a
trade-off that a lot of alpha geeks are willing to make.

uSerS Are peOple, tOO 137

But remember that Unix and Git are fairly strange counterexamples
to the norm. These pieces of software take pride in catering to
extremely technical audiences, but most software development
aims to move the vertical line to the left as much as possible. That’s
certainly true of popular software like Gmail, Facebook, or Apple’s
iOS. In general, the more users you have, the more successful you
are (and the more money your company makes!). The moral here
is that when you’re considering your users, think hard about who
your audience is. Is your software usable by the biggest group
possible? This is why simple and thoughtful user interfaces matter
so much—as well as things like polished documentation and
accessible tutorials.

How usable is Git?

Consider Barrier to Entry

Now think about the first-time users of your software. How hard is
it to get going for the first time? If your users can’t easily try it out,
you won’t have any. A first-time user usually isn’t thinking about
whether your software is more or less powerful than a competitor’s;
she just wants to get something done. Quickly.

138 ChApter 6

To illustrate, take a look at popular scripting languages. A majority
of programmers will espouse that Perl, Python, or Ruby is a
“better” language than PHP. They’ll claim that Perl/Python/Ruby
programs are easier to read and maintain over the long run, have
more mature libraries, and are inherently safer and more secure
when exposed to the open Web. Yet PHP is far more popular—at
least for web development. Why? Because any high school student
can just pick it up through osmosis, by copying his buddy’s website.
There’s no need to read books, do extensive tutorials, or learn
serious programming patterns. It’s conducive to tinkering: just start
hacking on your site and figure out different PHP tricks from your
peers.

Another example can be found in text editors. Should programmers
use Emacs or vi? Does it matter? Not really, but why would a
person choose one over the other? Here’s a true anecdote: when
Ben first started learning Unix (during an internship in 1990) he
was looking for a text editor to launch. He opened an existing file
by launching vi for the first time, and was utterly frustrated within
20 seconds—he could move around within the file, but couldn’t
type anything! Of course, vi users know that one has to enter “edit”
mode to change the file, but it was still a horrible first experience for
a newbie. When Ben launched Emacs instead, he could immediately
begin editing a file just like he would do on his familiar DOS word
processor. Because the initial behavior of Emacs was identical to
his previous experiences, Ben decided to become an Emacs user
within his first minute. It’s a silly reason to choose one product
over another, but this sort of thing happens all the time! That first
minute with a product is critical.

Of course, there are other ways to destroy the first impression. The
first time your software runs, don’t present the user with a giant
form to fill out or a giant panel of mandatory preferences to set.
Forcing the user to create some sort of new account is pretty off-
putting as well; it implies long-term commitment before the user
has even done anything. All these things send the user screaming in
the other direction.

uSerS Are peOple, tOO 139

If your product is a web application, make sure it loads quickly!
We’ve become spoiled about web page speed. When told to check
out a new website, if it doesn’t load within three or four seconds,
Fitz usually aborts and loses interest. There’s simply no excuse here.
When programmers make users wait in line at the entrance, that’s
an irritating barrier to entry. The web browser makes it easy to
walk away and redirect our attention to 12 other places. We have
better things to do than wait for a page to load.

A great example of a nearly invisible barrier to entry is the TripIt
web service, which is designed to manage travel itineraries. To start
using the service simply forward your existing travel-confirmation
emails (airplane, hotel, rental car, etc.) to plans@tripit.com. Poof,
you’re now using TripIt. The service creates a temporary account
for you, parses your emails, creates a gorgeous itinerary page, and
then sends an email to tell you it’s ready. It’s like a personal assistant
instantly showing up, and all you did was forward a few messages!
With almost no effort on your part, you’ve been sucked in and
are browsing the website as an involved user. At this point, you’re
willing to create a real service account.

If you’re skeptical about your own product’s barrier to entry, try
doing some simple tests. Give your software to ordinary humans—
both technical and nontechnical—and observe their first minute or
two. You may be surprised at what you discover.

Measure Usage, Not Users

In pondering the size of your user base and whether it’s easy to get
started, you should also consider how you measure usage. Notice
that we said usage, not installs or registered users—you want a
high number of users who use your product, not a high number of
times people download your product. You’ll often hear someone say,
“Hey, my product has had 3 million downloads—that’s 3 million
happy users!” Wait; back up. How many of those 3 million users
are actually using your software? That’s what we mean by “usage.”

mailto:plans@tripit.com

140 ChApter 6

As an extreme example, how many machines is the Unix archive
utility “ar” installed on? Answer: just about every Unix-based OS
out there, including all versions of Linux, Mac OS X, BSD, and
so on. And how many people use that program? How many even
know what it is? Here we have a piece of software with millions of
installs and near-zero usage.

Usage is something that many companies (including Google)
spend a lot of time measuring. Common metrics include “7 day
actives” and “30 day actives”—that is, how many users have used
the software in the past week or month. These are the important
numbers that actually tell you how well your software is doing.
Ignore the download counts. Figure out a way to measure ongoing
activity instead. It’s the true indicator of software uptake.

Speed Matters

Back to the page-speed issue: most programmers vastly
underestimate the importance of application speed (or latency, which
sounds more scientific). When a program responds quickly, it has a
deep subliminal effect on users. They start using it more and more
because it feels frictionless. It becomes an unconscious extension
of their abilities. On the other hand, a slow application becomes
increasingly frustrating over time. Users start using the software
less and less, often without even realizing it.

After a product launches, it’s exciting to see usage grow over time.
But after a while the usage often hits a limit—it just sort of flatlines.
This is the point where the marketing folks often step in and scream
about needing more features, prettier colors, nicer fonts, or more
animations that “pop.” Sometimes, however, the actual reason for
the stall is latency. The program has become laggy and frustrating.
As the next graph shows, user engagement decreases as latency
increases.

uSerS Are peOple, tOO 141

Examining user engagement over time

A true story from Google: an engineering team one day released
some dramatic latency improvements to Google Maps. There was
no announcement, no blog post; the launch was completely secret
and silent. Yet the activity graph showed a huge (and permanent)
jump in usage within the first couple of days. There’s some powerful
psychology going on there!

Even small improvements in latency matter when you’re serving a
web-based application. Suppose it takes 750 milliseconds for your
main application screen to load. That seems fast enough, right? Not
too frustrating for any given user. But if you could slash your load
times to 250 milliseconds, that extra half of a second makes a huge
difference in aggregate. If you have a million users each doing 20
requests per day, that amounts to 116 years of saved user time—stop
killing your users! Improving latency is one of the best ways to
increase usage and make your users happy. As Google’s founders
like to say, “Speed is a feature.”

142 ChApter 6

Don’t Be All Things

Is your software trying to accomplish too much? This sounds like
a silly question at first, but some of the worst software out there is
bad because it’s overly ambitious. It tries to be absolutely everything
to everyone. Some of the best software succeeds because it defines
the problem narrowly and solves it well. Instead of solving every
problem badly, it solves really common problems for most users and
does it really well.

We often joke about certain gadgets we see in magazine ads: hey,
look; it’s a camping lantern, with a built-in weather radio! . . . and,
uh, also a built-in TV, and um, stopwatch, and alarm clock, and .
. . eh? It’s a confusing mess. Instead, think of your software as a
simple toaster oven. Does it cook everything? Absolutely not. But it
cooks a lot of really common food and is useful to almost everyone
who encounters it . . . without being overwhelming. Be the toaster
oven. Less is often more.

What the heck is this product?

uSerS Are peOple, tOO 143

Don’t Be Lazy

Laziness is a trap to watch out for. Some would argue that laziness
is a virtue for programmers because it leads to efficient automation
of work. On the other hand, it can be easy to code something that
results in great pain for users. Making software easy for users can
be a great annoyance to the programmer. Focus on the user, not
what’s convenient for you to code. If it’s annoying to code, just suck
it up anyway.

A classic example of laziness is to present too many options to
your users. People love to make fun of the late-1990s generation of
Microsoft Office products: button bars! They make every possible
menu item instantly available...for great convenience! User interface
designers love to make fun of this idea, especially when taken to an
extreme:

Don’t be lazy and show all possible choices at once.

Having too many options is overwhelming. It’s intimidating and
off-putting. There have even been books written about how too
many choices create anxiety and misery.1 You even need to be
careful within your software’s Preferences dialog. (Did you know
that Eudora, a popular email client, had 30 different panels

1 Schwartz, Barry. The Paradox of Choice: Why More Is Less (Ecco).

144 ChApter 6

of preference values?) And if you’re making someone fill out a
form, be lenient in what you accept: deal with extra whitespace,
punctuation, or dashes. Don’t make the user do the parsing! It’s
about respecting the user’s time. It’s really obvious (and infuriating)
when a programmer could have made something friendly and easy
for the end user but didn’t bother.

Hide Complexity

“But my software is complex,” you may think, “and it’s solving
a complex problem. So why should I try to hide that?” That’s a
reasonable concern, but it’s also one of the central challenges of
good software design. An elegant design makes easy things easy
and hard things possible. Even when doing complex things your
software should feel seamless and easy. (Again, we’re focusing on
the user’s emotions.)

This is what we like to call “hiding the complexity.” You take a
complex problem and break it up, cover it, or do something to
make the software seem simple anyway.

Look at Apple again. Apple’s product design is legendary, and one
of the cleverest things it did was to creatively tackle the problem of
managing MP3 music collections. Before iPods came along, there
were a handful of awkward gizmos that tried to manage music
right on the portable device. Apple’s genius was to realize that MP3
management was too difficult a problem to solve on a tiny screen,
so it moved the solution to a big computer. iTunes was the answer.
You use your computer (with big screen, keyboard, and mouse)
to manage your music collection, and then use the iPod just for
playback. The iPod can then be simple and elegant, and organizing
your music is no longer frustrating.

Google is another well-known example. Google’s search interface
(and barrier to entry) is almost nonexistent: it’s just a magic box
to type in. Yet behind that box, there are thousands of machines
across the planet responding in parallel to every keystroke you type,
giving you auto-completion suggestions. By the time you hit Enter
the search results have already been collated and rendered in the
background, ready to instantly display on your screen. The amount
of technology behind that text box is jaw dropping, and yet the
complexity is hidden.

uSerS Are peOple, tOO 145

The point is that Apple and Google each have interfaces that read
like Magic.2 This is a great goal for any software engineer to pursue
since it’s essentially the epitome of software usability.

Finally, we should mention a caveat about complexity. While
masking complexity is laudable, it is not a goal to seal the
software so tight that it ends up handcuffing all your users. Hiding
complexity almost always involves creating clever abstractions,
and as a programmer you need to assume that the abstractions will
eventually “leak.” When a web browser prints a 404 error, that’s a
leaked abstraction; the illusion is cracked. Don’t panic, though—it’s
better to assume that abstractions are leaky and simply embrace
them by providing deliberate ways to lift the curtain. A great way
to do this is to provide APIs to other programmers. Or for really
advanced users, create an “expert mode” that provides more
options and choices for those who want to bypass the abstractions.

Not only is it important to keep the interface flexible and able to be
circumvented; the user’s data needs to be accessible as well. Fitz has
put a great deal of passion into making sure Google products offer
“data liberation”—that it’s trivial for a user to export his data from
an application and walk away. Software shouldn’t lock users in, no
matter how elegant the interface is. By allowing users to open the
hood and do whatever they want with their data, it forces you to
compete honestly: people use your software because they want to,
not because they’re trapped. It’s about engendering trust, which (as
we’ll mention) is your most sacred resource.

Managing Your Relationship with Users
OK, so your software is appealing on first sight. It’s easy to get
started. And once people begin, it’s really pleasant and usable.
What happens months down the line? How do you interact with
people who use your software every day, for years at a time?

Believe it or not, many users want to have a relationship with your
company or team. Happy users want to know what’s going on with
your software’s evolution; angry users want a place to complain.
One of the biggest mistakes programmers make is to toss software
over a wall and then stop listening to feedback.

2 See Arthur C. Clarke’s Third Law.

146 ChApter 6

Like marketing, the words customer service also typically have a
negative connotation. A career in “customer service” often conjures
up an image of a barista working at a coffee shop or a room full
of robotic people answering support calls. But in reality, customer
service isn’t a nasty, soul-draining task; nor is it something that
other people (with lesser job descriptions) do. It’s a philosophy to
live by—a way of thinking about your ongoing connection to users.
It’s something you need to do proactively as a software team, not as
a mere reaction to external complaints.

Software engineers often dread direct interactions with users.
“Users are clueless,” they think. “They’re annoying and impossible
to talk to.” And while nobody’s requiring you to shower every user
with love, the simple fact is that users want to be heard. Even if they
make inane suggestions or clueless complaints, the most important
thing you can possibly do is acknowledge them. The more you allow
them to participate in the discussion and development process, the
more loyal and happy they’ll be. You don’t have to agree with them,
but you still need to listen. Companies are rapidly learning this in
the age of social media—just reaching out to someone as a human
and not as a giant, faceless corporation is often enough to alleviate
that person’s concerns. People love it when corporations openly
display HRT.

More than anything, users just want to be heard.

uSerS Are peOple, tOO 147

We like to illustrate the importance of managing users over time by
drawing another simple (slightly unscientific) graph. As time goes
on, your software gains more and more users. Of course, as you
“improve” the product, it also gains more and more complexity:

Measuring the number of users of your product

The problem here is that as the number of users increases, their
average level of technical ability decreases, because you’re covering
more and more of the general population. Pair this up with ever-
increasing complexity and you’ve got a serious issue with users’
despair:

148 ChApter 6

Measuring your users’ happiness over time

More despair means more complaints, angrier users, and an
ever-increasing need for open communication with the software
developers!

Many corporations do everything they can to put up walls of
bureaucracy between programmers and users. They create voicemail
trees to navigate through or file complaints as “help tickets” that
are tracked by layers of people who aren’t actually writing the
software. Messages are relayed only indirectly through these layers,
as though direct contact with the dangerous rabble might endanger
developers (or pointlessly distract them from coding). This is how
users end up feeling ignored and disempowered and how developers
end up completely disconnected.

A much better mode of interaction is to directly acknowledge users.
Give them a public bug tracker to complain in and respond to them
directly. Create an email list for them to help one another. If your
product can be open source, that’s a huge help as well. The more
“human” you appear to users, the more they trust in the product,

uSerS Are peOple, tOO 149

and despair begins to lessen. Be on the lookout for people using
your products in unexpected (and awesome) ways. Only through
true dialogue can you discover what they’re really doing with your
software, possibly something clever or thrilling.

Don’t Be Condescending

A common misconception that powers our fear of direct user
interaction is the myth that users are stupid. They’re not writing
the software, after all, so they’re just “clueless users,” right? When
you finally have an opportunity to interact with them, the most
important thing to remember is to avoid condescension. Being a
savvy computer user is not a fair measure of general intelligence. A
lot of brilliant people out there use computers as a tool and nothing
more. They’re not interested in debugging or following scientific
methods to diagnose a problem. Remember that most of us have
no idea how to take apart and fix our cars; assuming your users are
stupid is akin to an auto mechanic thinking you are stupid because
you don’t know how to rebuild a transmission, nor even care how to
diagnose a transmission problem. The car is a black box—you just
want to drive. For most people, the computer (and your software)
is a black box, too. Users don’t want to participate in the analysis
process; they just want to get some work done. It has nothing to do
with intelligence! Give users respect by default.

Be Patient

The corollary, then, is to learn great patience. Most users simply
don’t have the vocabulary to express their problems succinctly. It
takes years of practice to learn to understand what they’re saying:
just ask anyone who has tried to provide computer tech support to
his parents over the phone (which is probably most of you reading
this book!). Half of the discussion comprises just trying to agree
on the same vocabulary. Many people don’t know what a web
browser is, thinking it’s just part of their computer. They describe
applications as actions, or talk about screen icons as mysterious
workflow names. The thing is, even the most intelligent folks have a
knack for creating their own logical universe (and vocabulary) that
explains how computers behave. They begin to diagnose problems

150 ChApter 6

in terms of imaginary taxonomies and rules that exist only in their
minds.

Parent: “I think my computer is slow because the disk is
full.”

You: “How do you know the disk is full? Did you check?”

Parent: “Yeah, well, the screen is totally covered with icons,
so there’s probably no more room for my email to download.
Maybe I can delete some cookies to make more space, huh?
That seemed to work last time.”

You: </facepalm>

The critical listening skill here is to learn to understand what people
mean, not necessarily to try to interpret what they literally say. It
requires not just some language translation, but some emotional
intelligence as well. And mind reading.

Fitz has a great story about his grandmother in which she asked
him (over the phone), “Brian, is that old computer of grandpa’s
worth anything at all?” Fitz said no, that it was just a very old Mac
Classic without an Internet connection—probably best to safely
recycle it. Her response: “OK, well, I only turn it on when I need to
sharpen a pencil.”

After a prolonged moment of utter confusion, Fitz decided he
needed to start questioning her so that he could figure out just what
she meant!

It turns out that both the Mac and grandma’s electric pencil
sharpener were plugged into a power strip. Once a week grandma
would come into the room with her pencils and turn on the power
strip. The Mac would beep and begin to boot. Grandma would
sharpen her pencils and then cut the strip’s power when she left the
room, abruptly killing the Mac before it could even finish booting.3
This is a great example of a nontechnical person attempting to
explain a situation using limited vocabulary and whatever model
has sprung up around her relationship to the computer.

3 In case you’re concerned, the Mac has since been put out of its misery.

uSerS Are peOple, tOO 151

Remember the poor, tortured Mac.

A lot of people also have magical preconceptions of Google’s search
service. Many people think it’s just part of their computer. In 2005,
we used to get puzzled looks from people when we told them we
were engineers at Google: “Oh! I didn’t know anyone worked
there?!” On the flip side, a friend of Fitz’s grandmother once got
upset when she heard the entire company was going to go on an
off-site ski trip. (This was back when the company was still small.)
“That’s terrible! How can they all go skiing?” she asked. “Who’s
going to do all my searches for me?” Clearly, Google was being
negligent, not leaving enough switchboard operators to keep the
traffic running.

Create Trust and Delight

There are two more watchwords that should become the
cornerstones of the way you interact with users: trust and delight.

Trust is a tricky term. We’ve already talked about trust in the context
of HRT—about whether and how you exhibit trust toward your
coworkers. In this case we’re talking about garnering trust from
users. When a user trusts your team (or your company) it’s mainly
an emotional state: very few people would ever say, “I trust product
X because of this long list of facts that prove that my relationship
with it carries zero risk.” They trust you because the cumulative set
of interactions they’ve had with you add up to an overall emotionally
positive state.

152 ChApter 6

Think about your friends and family for a moment. How many of
them have an auto mechanic they really trust? These days the answer
is nearly zero. Almost nobody trusts auto mechanics, because we’ve
been badgered by years of what is called “mailboxing”: when you
come in for one scheduled service (like an oil change), but a bunch
of other unexpected maintenance services are piled on. Nobody
believes mechanics anymore, because they’ve been instructed to
maximize profit at every opportunity. Remember, there is no such
thing as a temporary lapse of integrity.

This is a great example of how the long-term relationship can be
easily sacrificed for short-term gain. Screw your customers just
a teeny bit every now and then, and eventually they view the
relationship through a veil of aggregated disdain. On the other
hand, every time your team does something helpful or useful, or is
responsive, a bit of trust is added to an imaginary bank account in
their minds. When a baker adds a surprise 13th donut to your dozen
(“lagniappe,” as they call it in New Orleans), this brings a smile to
your face. Over years of dealings the trust account grows and grows
until the mention of your product brings a warm, fuzzy feeling.

Trust can be dangerous, however, because it can be blown all at
once—just like a bank account can be drained with a single stupid,
impulsive, overpriced purchase. If your company does something
that shows a total lack of respect for users (even if by accident), the
trust bank is emptied overnight.

A good example of this (at the time of this writing, in late 2011) is
the way Netflix temporarily messed up its relationship with users.
Netflix is a service for streaming movies over the Internet and also
a way for renting DVDs by postal mail. Over the period of a decade
it became increasingly popular: it was easy, convenient, and novel.
The price was cheap. By early 2011 it had more than 23 million
subscribers.

At some point the business folks realized their DVD and streaming
services were really separate businesses with separate profit models,
management needs, and so on. So they decided to start charging
for these businesses separately, raising their monthly fees 60% for
some users. Customers were furious. Then Netflix announced that
it would be splitting into two separate companies for greater clarity
and convenience; to users this simply read as “now you have the
annoyance of two bills to pay instead of one.” Realizing they had a

uSerS Are peOple, tOO 153

PR disaster on their hands, they then unannounced the splitting of
the company, but by that time it was too late. The damage had been
done. Despite a history of continuous growth they lost 800,000
subscribers in the span of three months. They managed to blow
most of a decade’s worth of trust with just a couple of small moves
that seemed like simple and necessary business decisions, but had
little regard for existing relationships.

Trust is your most sacred resource. Watch it carefully. Measure the
size of the bank account. Before every move, think about how it
will affect the bank account. Focus on your long-term image, not
short-term conveniences.

Like trust, delight is another feeling that can vastly improve your
relationship with users. It’s a way of increasing that warm, fuzzy
feeling, and making your team seem more human.

Give your users a little gift now and then.

You have to start by not taking yourself too seriously. Google has
a tradition of making outlandish product announcements on April
Fools Day; for example, one year, every video on the front page of
YouTube caused a “rickroll.” Or take a look at www.woot.com. It’s

http://www.woot.com

154 ChApter 6

a daily deal site, but the advertising copy is full of self-deprecating
and quirky humor.

Try to surprise your users with amazing, wonderful bits of
happiness. (That’s the definition of delight, isn’t it?) Despite Google
being a powerhouse of hard computer science, nothing excites its
users more than the occasional “doodle” that illustrates a holiday or
anniversary. It’s just a tiny bit of artwork injected into people’s day
and yet it inspires endless letters of feedback and office watercooler
discussions.

Of course, a bit of horror can inspire users as well, as long as it’s
done humorously. A company trying to start a social network once
wanted to encourage new users to upload pictures of themselves;
eventually the company decided to start showing a picture of
snarling Dick Cheney for every user who hadn’t done so—and the
photo uploads suddenly started pouring in!

Adding bits of delight and humor—tactfully—goes a long way
toward showing that you’re actually paying attention to users and
care about your relationship with them.

Remember the Users
We’ve covered a slew of ideas in this chapter, but in the end, it
all boils down to three simple concepts that you can stick in your
pocket:

Marketing

Be aware of how people perceive your software; it determines
whether they even try it out.

Usability

If your software isn’t easy to try, fast, friendly, and accessible,
users will eventually walk away.

Customer service

Proactive engagement with long-term users affects your software’s
evolution and user retention.

Our day jobs as programmers are so full of distractions—code
reviews, design reviews, fighting with our tools, putting out

uSerS Are peOple, tOO 155

production-related fires, triaging bugs—that it’s easy to forget the
reason we’re writing software at all. It’s not for you, or your team,
or your company. It’s to make life easier for users. It’s critical to pay
attention to what they’re thinking and saying about your product
and how they’re experiencing it over the long run. Your users are
the lifeblood of your software’s success. You reap what you sow.

 157

E P I L O G U E

Epilogue

We’ve covered an awful lot of topics in this book. After closing the
cover it may be hard to figure out which parts to embrace in your
daily life. After all, what’s the point of reading a book like this if it
doesn’t result in some changes in the way you work? What happens
now?

Let’s keep things simple. If you remember anything at all about our
stories, remember HRT: humility, respect, and trust.

As we explained in the first chapter, these three core traits are the
things that need to underlie every social action you make and every
relationship you cultivate. And if you look carefully you’ll find that
nearly every social problem stems from a lack of one of these traits.

Remember that HRT applies to all your different “spheres” of
influence. It applies to you before anything else: these traits affect
every individual communication you make. It applies to your team:
a culture based on humility, respect, and trust will spend the most
time coding and the least time infighting. It applies to the way people
lead teams: skilled leaders serve their teams and not the other way
around. HRT also applies to the way you interoperate with and
survive temporary collaborators outside your team, whether they
are nice folks, jerks, or a dysfunctional bureaucracy. And finally,
these principles apply directly to the way you interact with the most
important group of all—the users of your software.

158 epIlOGue

If you keep HRT at the forefront of the way you work, you’ll have
greater impact with considerably less effort. We think it’s the best
way to end up spending the most amount of time doing what you
love (shipping great software) and the least amount of time dealing
with social conflicts, bureaucracy, and other human drama.

A Final Thought
It’s time to let the cat out of the bag. If you haven’t figured it out
already, most of the advice in our book isn’t necessarily specific to
software development.

Our stories are essentially about the art of maintaining a healthy,
functional community—any community. You could take our
anecdotes, remove the parts specific to software development, and
substitute any other sort of activity. We could be talking about a
neighborhood club, a church group, a fraternity, or a construction
team; the same social problems exist and the same solutions are
applicable. Humans are tricky to deal with no matter what the
context, and software development has the same community-health
issues as any other group endeavor.

So, while you’re out there busily incorporating HRT into your daily
life as a programmer, keep in mind that it applies to the rest of your
life as well.

Who knows? It’s possible that our real calling may be in writing
church sermons. But for now we’ll stick to writing software and
getting the most out of collaboration. And now you have the power
to do that, too.

 159

A P P E N D I x A

Further Reading

We created this book based on our experiences writing software
with numerous teams and people, but we’ve also read many books
and articles that have helped us formulate the thoughts that we laid
out on these pages. Here are a few of the books and articles that
influenced us along the way:

•	 Peopleware: Productive Projects and Teams, 2nd edition, by
Tom DeMarco (Dorset House)

•	 Drive: The Surprising Truth About What Motivates Us by
Daniel H. Pink (Riverhead)

•	 “You and Your Research” by Richard Hamming (http://www.
cs.virginia.edu/~robins/YouAndYourResearch.pdf)

•	 Predictably Irrational: The Hidden Forces That Shape Our
Decisions by Dan Ariely (HarperCollins)

•	 The Mythical Man-Month: Essays on Software Engineering, 2nd
Edition, by Frederick P. Brooks (Addison-Wesley Professional)

•	 Startup Engineering Management by Piaw Na (self-published)

•	 Apprenticeship Patterns: Guidance for the Aspiring Software
Craftsman (http://shop.oreilly.com/product/9780596518387.
do) by Dave Hoover and Adewale Oshineye (O’Reilly)

•	 Quiet: The Power of Introverts in a World That Can’t Stop
Talking by Susan Cain (Crown)

http://www.cs.virginia.edu/~robins/YouAndYourResearch.pdf
http://www.cs.virginia.edu/~robins/YouAndYourResearch.pdf

160 AppenDIx A

•	 Fearless Change: Patterns for Introducing New Ideas by Mary
Lynn Manns (Addison-Wesley)

•	 The Art & Adventure of Beekeeping by Ormond Aebi (Rodale
Press)

•	 “Maker’s Schedule, Manager’s Schedule” by Paul Graham
(http://www.paulgraham.com/makersschedule.html)

•	 The Art of Readable Code (http://shop.oreilly.com/
product/9780596802301.do) by Dustin Boswell and Trevor
Foucher (O’Reilly)

•	 Mastery: The Keys to Success and Long-Term Fulfillment by
George Leonard (Plume)

•	 “The Significance of Task Significance: Job Performance Effects,
Relational Mechanisms, and Boundary Conditions” (2008)
by Adam M. Grant (Journal of Applied Psychology 93:1, pp.
108–124)

•	 Project Retrospectives: A Handbook for Team Reviews by
Norman L. Kerth (Dorset House)

•	 The Luck Factor by Richard Wiseman (Miramax)

•	 Search Inside Yourself by Chade-Meng Tan (HarperOne)

•	 Being Geek (http://shop.oreilly.com/product/9780596155414.
do) by Michael Lopp (O’Reilly)

•	 The Paradox of Choice: Why More is Less by Barry Schwartz
(Ecco)

•	 Critical Chain by Eliyahu M. Goldratt (North River Press)

•	 Delivering Happiness: A Path to Profits, Passion, and Purpose
by Tony Hsieh (Hachette Book Group)

 161

Index

A
administrative assistants, 121
agendas, meeting, 40
aggressive people, 32–33
Agile methodology, 38
Anna Karenina principle, 107
antipatterns for successful leaders

being everyone’s friend, 63–64
compromising hiring pro-

cess, 64
described, 60
hiring pushovers, 60
ignoring human issues, 62–63
ignoring low performers,

60–62
treating members like chil-

dren, 64–65
apologizing for mistakes, 67
Apple iTunes, 144
application speed, 140–141
ASF (Apache Software Foundation)

described, xx, 15
public perception and, 133
team cultures and, 29–30

asking questions. See questions,
asking

attention, protecting, 89–90
author tags in source code

files, 48–49
autonomy, motivation

through, 83–84

B
behavior patterns for leaders

being honest, 74–76
as catalysts, 70–72
described, 66
losing the ego, 66–67

setting clear goals, 73
as teachers and mentors,

72–73
tracking happiness, 76–78
Zen management tech-

nique, 68–70
Boswell, Dustin, 47
bug trackers

described, 46
overentitlement example, 92
for users, 148

bus factor, 7–8, 88

C
Cain, Susan, 33
call to action, 121–123
“carrot and stick” method of

management, 55
catalysts, leaders as, 70–72
chance opportunities, 118–119
Cheney, Dick, 154
code comments, 46–48
code reviews, 50
commenting code, 46–48
commits, code reviews and, 50
communication

in day-to-day discussions,
42–46

in issue tracking, 46
poisonous people and, 92
in software development,

46–50
Subversion project motto

about, 41
in synchronizing goals, 35–42
team culture and, 34–35,

50–51
complexity, hiding, 144–145

162 InDex

compliment sandwich tech-
nique, 74–75

connectors in organizations, 120
consensus building

leaders and, 70–71
poisonous people and, 89
stereotypes about, 31

constructive criticism, 16–17,
32–33, 67

Coughran, Bill, xix
criticism

constructive, 16–17, 32–33, 67
handling, 16–18
honesty in, 74
public, 72

customer service
condescending attitudes to-

ward, 149
creating trust and de-

light, 151–154
described, 145–149, 154–155
patience and, 149–151

D
day-to-day discussions

face-to-face conversations, 41,
121

hallway conversations, 41, 46
instant messages, 41, 44
Internet Relay Chat, 44–45
mailing lists, 43–44, 44
online chats, 43–45, 44–46

decision-making process, 31, 32
defensive work, 117
delegating work, 78
delight, creating, 153–154
DeMarco, Tom, xxii
design by committee, 112
design documentation, 42
distributed teams, 41

E
Edison, Thomas, 18
egos

HRT principles regarding,
15–16, 20

losing the ego, 66–67
of poisonous people, 91
team culture and, 32

email etiquette, 88
energy creature, feeding, 95
engineers. See software engineers
extrinsic motivation, 83–84

F
face-to-face conversations, 41,

121
failure

fear of, 107
Google motto about, 18
importance of, 6
postmortems, 18–19, 72
public criticism of, 72
risk taking and, 71–72,

106–107
favor economy, luck and,

118–119
fear of failure, 107
feedback

compliment sandwich in,
74–75

honesty in, 74
ignoring, 33
leaders and, 80
programmers and, 8

first impressions, 132–133, 138
flipping the bozo bit, 90
focus

in bad organizations, 112
on long-term, 99–100
on product launches, 116
protecting, 89–90

Focus on the user motto, 134
forgiveness versus permission

route, 113–114
Foucher, Trevor, 47
friendships, leaders and, 63–64

G
Gates, Bill, 2
gear ratios in organizations, 68
geek fantasy, 4
genius programmer myth

described, 1–5
hiding code and, 1, 5–10
HRT principles and, 11–24
teamwork and, 10–11

InDex 163

openness to influence, 21–22
servant leadership and, 59

I
industrial revolution, 55
influence, openness to, 21–22
information hoarding, 108
insecurity

fear of failure and, 107
genius myth and, 4–5
handling criticism and, 16–18
hiding code, 2
leaders and, 60

instant messages, 41, 44
institutional knowledge, 120
Internet Relay Chat (IRC), 44–45
intrinsic motivation, 83–84
introverts, environment and, 33
IRC (Internet Relay Chat), 44–45
issue/bug trackers

described, 46
overentitlement example, 92
for users, 148

J
Jackson, Phil, 4
Jobs, Steve, 3, 64, 121–122
Jordan, Michael, 2, 3

K
Kerth, Norman, 96
“knowledge is power”, 108

L
latency (application speed),

140–141
laziness trap for program-

mers, 143–144
leaders and leadership

air cover for teams, 80
antipatterns, 60–65
in bad organizations, 110–112
behavior patterns for success-

ful, 66–80
“carrot and stick” method, 55
decision making process

and, 32

goal-setting
successful leaders and, 73
synchronizing goals, 35–42

Google C++ Style Guide, 47–48
Google Maps, 141
Google search, 135, 144–145
Google Web Toolkit (GWT), 36
Graham, Paul, 39
GWT (Google Web Toolkit), 36

H
hallway conversations, 41, 46
Hamming, Richard, 14–15, 15
Hanlon, Robert J., 101
happiness

Anna Karenina principle
and, 107

tracking, 76–78
Hayman, Steve, 106
heroes, 2–3
hiding code

as harmful, 5–10
insecurity and, 2

hiding the complexity, 144–145
hiring process

antipatterns for leaders, 60
compromising, 64
team culture and, 30

honesty, leaders and, 74–84
Hope is not a strategy motto, 61
Hopper, Grace Murray, 113
HRT principles

bad behavior and, 89
described, 11–14, 157
handling criticism, 16–18
honesty in feedback, 74–75
importance of continuing

learning, 20
learning from failure, 18–19
learning patience, 20–21
lose the ego, 15–16
openness to influence, 21–22
servant leadership and, 59
Three Bullets and a Call to Ac-

tion technique, 124
humility (HRT principle)

described, 12, 157
handling criticism and, 16–18
losing the ego and, 15–16

164 InDex

mission statements
described, 35–37
fortifying teams with, 73, 88

motivation
motivation matrix, 82–83
types of, 83–84

N
navigating organizational struc-

ture. See organizational
manipulation

Netflix service, 152–153
noisy minority, 43
nothing in excess maxim, 47

O
obsessive-compulsive behavior, 93
offensive work, 117
office politicians, 109–110
online chats, 41, 44–46
opportunities, chance, 118–119
organizational manipulation

bad organizations and,
110–112

described, 103–104, 113–114
emailing excecutives, 121–125
foregiveness and permis-

sion, 113–114
getting ideas accepted,

114–115
leaving the system, 125–127
life under bad managers,

107–109
life under ideal manag-

ers, 104–107
luck and favor economy,

118–119
managing upwards, 115–117
office politicians, 109–110
promotions and, 119–120
seeking powerful friends,

120–121
overdelivering, underpromising

and, 116–117, 133
overentitlement, 92, 95

evolution of terminology,
55–57

finding own replacement,
78–79

gear ratios in organizations, 68
life under bad managers,

107–109
life under ideal manag-

ers, 105–107
making waves, 79
manageritis, 54
managing upwards, 115–117
moving past roadblocks, 70
need for, 4
Peter Principle, 58
praise from, 80
quantifying work of, 57–59
servant leaders, 59, 109
shielding team from cha-

os, 80–81
team culture and, 28
treating people like plants,

81–82
leaked abstractions, 145
listening skills

customer service and, 150
dealing with poisonous

people, 96
losing the ego, 66–67
low performers, 60–62
luck and favor economy, 118–119

M
mailboxing (auto mechanics), 152
mailing lists, 41, 43–44
“Making GWT Better” docu-

ment, 36–37
manageritis, 54
manipulation, organization-

al. See organizational
manipulation

marketing, 130–132, 154
mastery, motivation through, 83
measuring software usage, 139
media industry, 133
meeting efficiency, 38–51, 112
mentor, leaders as, 72–73
Microsoft Office button bars, 143

InDex 165

P
pace of progress, 7
paranoia, poisonous people

and, 92–93
patience

customer service and, 149–151
learning, 20–21

pencil sharpener story, 150–151
perception maxim, 117, 132
perfectionism

described, 93
redirecting, 94–95

performance
feedback about, 75
ignoring low performers,

60–62
poisonous people affecting, 88

permission versus forgiveness
route, 113–114

Peter Principle, 58
Pink, Dan, 83
plants, treating people like, 81–82
poisonous people

communication behaviors, 92
defining, 86–87
egos of, 91
feeding the energy creature, 95
focusing on long term

with, 99–100
fortifying teams, 87–89
getting emotional with, 96
identifying, 89–93
knowing when to move on, 98
listening carefully to, 96
not respecting people’s

time, 90–91
overentitlement and, 92, 95
paranoia and, 92–93
perfectionism in, 93, 94–95
repelling, 93–100
responding with niceness

to, 97–98
postmortems, 19–20, 72
powerful friends, 120–121
product launches, 116
programmers. See software

engineers
promotions to position of

safety, 119

public perceptions
described, 130–132
first impressions and, 132–133
underpromising and

overdelivering, 133
working with industry analysts,

133
purpose, motivation through, 84

Q
questions, asking

cutting losses, 91
in properly functioning

companies, 106
What do you need?, 77
Zen management and, 69

R
realistic expectations about

people, 77
release processes, 50, 89
respect (HRT principle)

customers and, 152
described, 12, 157
leaders and, 67
openness to influence, 21–22
poisonous people and, 90–91
servant leadership and, 59
team culture and, 31
working with industry analysts,

133
Richie, Dennis, 3
Right Thing, doing, 126
risk taking

leaders and, 71–72
life under bad managers

and, 107
life under ideal managers

and, 106–107
poisonous people and, 89–93

Rosing, Wayne, 40
“rubber duck debugging”, 70

S
Savoia, Alberto, 71
Schmidt, Eric, 77
scripting languages, 138
second opinions, 114

166 InDex

standing meetings, 38
starter culture, 27, 87
Star Trek episode, 95
synchronizing goals

design documentation, 42
efficient meetings, 38–41
mission statements, 35–37, 73

T
Tan, Chade-Meng, 126
teachers, leaders as, 72–73
team culture

communication and, 34–35,
50–51

compromising hiring process
and, 64

curating, 28–30
in day-to-day discussions,

42–46
described, 25–28
elements of, 27
evolution of, 51–52
fortifying teams, 87–89
issue tracking and, 46
poisonous people and, 87–89
realistic expectations about

people, 77
risk taking in, 71
software development

and, 30–33, 46–50
synchronizing goals, 35–42
tracking happiness in, 76–78
treating members like children,

64–65
teamwork

bus factor, 7, 88
low performers and, 60–62
moving past roadblocks, 70
pace of progress, 7
software development

and, 10–11
vocal interrupt protocol, 9

techie-celebrity, 4
tech lead manager (TLM), 57
tech lead (TL), 57
technical debt, 117
testing processes, 50, 89, 139
text editors, 138–139
Thompson, Ken, 3

self-confidence, 32, 66
self-promotion, 109
self-selecting team cultures,

29–30, 87
self-worth, 17
servant leaders, 59, 109
“shadow” org chart, 120
social engineering. See organiza-

tional manipulation
social skill pillars. See HRT

principles
software development

author tags in source code
files, 48–49

bus factor in, 7–8
code comments, 46–48
code reviews, 50
engineers and offices, 9
feedback loops and, 8
harm in hiding code, 5–10
metaphor for, 106
pushing out releases, 18
team culture and, 30–33,

46–50
teamwork, 10–11
testing and release process-

es, 50
software engineers

communication patterns,
34–35

described, 1
genius myth and, 2–5
hiding code, 1, 5–10
HRT principles and, 11–24
laziness trap for, 143–144
offices and, 9
teamwork and, 10–11
user relationships and, 146

software usability
barrier to entry consider-

ations, 137–139
choosing audience, 135–137
defining, 142
described, 134–135, 154
hiding complexity, 144–145
laziness trap, 143–144
measuring usage, 139
speed considerations, 140–141

“Speed is a feature” saying, 141
Stallman, Richard, 2

InDex 167

Three Bullets and a Call to Action
technique, 123

TLM (tech lead manager), 57
TL (tech lead), 57
Tolstoy, Leo, 107
Torvalds, Linus, 2
train stopping metaphor, 76
TripIt web service, 139
trolls, 89, 97
trust (HRT principle)

creating for customers,
151–154

described, 12–13, 157
leaders and, 56, 65, 66
office politician and, 109–110
openness to influence, 21–22
servant leadership and, 59

Tukey, John, 15

U
underpromising and overdeliver-

ing, 116–117, 133
usage measurements, 139
user interfaces, 136–138
user relationships

described, 129–130, 154–155
managing, 145–154
managing public percep-

tion, 130–133
software usability, 134–145

V
version control systems, 136
video chats, 41
Vinter, Steve, 59
vocal interrupt protocol, 9
vulnerability

openness to influence and, 21
team culture and, 27

W
What do you need? question, 77
Wiseman, Richard, 118

Z
Zen management techniques,

68–70

	Dedication
	Mission Statement
	Acknowledgments
	Introduction

	Chapter 1
	The Myth of the Genius Programmer

	Chapter 2
	Building an Awesome Team Culture

	Chapter 3
	Every Boat Needs a Captain

	Chapter 4
	Dealing with Poisonous People

	Chapter 5
	The Art of Organizational Manipulation

	Chapter 6
	Users Are People, Too

	Epilogue
	Epilogue

	Appendix A
	Further Reading

	Index
	Introduction
	Dedication
	Mission_Statement
	Acknowledgements
	_GoBack
	Intro
	_GoBack
	Insecurity
	Genius_Myth
	Hiding_Considered_Harmful
	Team_Sport
	The_Three_Pillars
	HRT_in_Practice
	Next_Steps
	Intro-1
	_GoBack
	What_is_Culture
	Why_Should_I_Care
	Culture_and_People
	Communication_Patterns_of_Successful_Cul
	How_Tools_Affect_Your_Culture
	Outro
	Intro-2
	Nature_abhors_a_vacuum
	Fear_of_becoming_your_parent
	The_Servant_Leader
	Antipatterns
	Patterns
	People_are_Plants
	Intrinsic_vs_Extrinsic_motivation
	Conclusion
	Intro-3
	Defining_Poisonous
	Fortifying_your_Team
	Identifying_the_Threat
	Repelling_the_Poison
	Focus_on_the_Long_Term
	Final_Thought
	_GoBack
	Intro-4
	_GoBack
	The_reality
	Coping_Strategies
	Plan_B
	Conclusion-1
	Intro-5
	Marketing
	Usability
	Customer_Service
	Outro-1
	Epilogue
	_GoBack
	Further_Reading
	_GoBack

